• 제목/요약/키워드: spinal cord regeneration

검색결과 34건 처리시간 0.019초

조직공학적 신경재생을 위한 NGF를 함유한 PLA 담체의 제조 및 방출 (Preparation and Release Profile of N8f-loaded Polylactide Scaffolds for Tissue Engineered Nerve Regeneration)

  • 전은경;황혜진;강길선;이일우;이종문
    • 폴리머
    • /
    • 제25권6호
    • /
    • pp.893-901
    • /
    • 2001
  • 조직공학적 신경재생 및 파킨슨씨병 등의 시경퇴행성 질환에서의 치료에 이용 목적으로 신경성장인자(nerve growth factor, NGF)를 생분해성 고분자 담체에 NGF를 서방화시키고자 PLA 담체에 함유시켜 유화동결건조법으로 제조하였다. 제조된 NGF의 방출량은 생체외 pH 7.4, 37$^{\circ}C$의 PBS 조건하에서 4주 동안 방출실험 하였으며, 함유된 NGF의 활성을 확인하기 위하여 PC-l2 세포에 직접 배양하여 확인하였다. 제조되어진 PLA 담체는 열린 셀 구조를 가졌으며, 초기 NGF의 함량이 많을수록 방출량도 증가를 보였으며, 제조과정에서의 NGF의 환성을 확인하기 위하여 PC-12 세포를 배양한 결과 신경돌기가 성장하였다. 본 연구는 생분해성 고분자 특정인 확산과 분해에 의해서 생물학적 활성물질인 NGF의 방출을 조절할 수 있으며, 조직공학적으로 서방화되어 3차원적인 신경재생을 가능케 할 것으로 기대된다.

  • PDF

초음파 치료가 좌골신경 압좌 손상된 흰쥐의 c-Fos 발현에 미치는 영향 (The Effects of c-Fos Expression on Ultrasound Treatment in Sciatic Nerve Crush Damaged Rats)

  • 김동대
    • 대한물리치료과학회지
    • /
    • 제14권1_4호
    • /
    • pp.11-23
    • /
    • 2007
  • This study was performed to evaluate the effects of low-intensity ultrasound application to the peripheral nerve injury animal model on enhancement of nerve regeneration and functional recovery. Using aseptic microsurgical techniques, the sciatic nerve of adult male Sprague-Dawley rats was crushed at the outside of right mid-thigh for 30 seconds with fine forceps. Beginning just after surgery, various continuous-wave ultrasound treatments with intensities of 0.2 W/$cm^2$, 0.5 W /$cm^2$ and 1.0 W /$cm^2$ operated at 1 MHz or sham treatment were applied to the opposite inside of the crush site for 1 minute every other day with a transducer moving speed of 2cm/sec. For evaluation of the progress of sciatic nerve regeneration, c-Fos expression in the lumbar spinal cord (L4-5) dorsal horn was investigated. c-fos expression was markedly increased at 1hour after sciatic nerve crush injury, then gradually decreased thereafter. The c-fos expressions were significantly decreased (p<0.05) in all the experimental groups in comparison with the control group until 3days post-crush, and the degrees of decrease were higher in 0.5 W/$cm^2$ and 1 W/$cm^2$ intensity ultrasound application groups. It is suggested that low-intensity ultrasound application to an animal model of sciatic crush injury may suppress pain transmission and promote nerve regeneration, and which may result in delayed progress of muscle atrophy and accelerated progress of muscle recovery and eventually may result in accelerated and improved foot function recovery.

  • PDF

The Study on Regenerative Effects of Ginseng on Injured Axonal and Non-Neuronal cell

  • Lim, Chang-Bum;Oh, Min-Seok
    • 대한한의학회지
    • /
    • 제29권5호
    • /
    • pp.14-28
    • /
    • 2008
  • Objective : This study was carried out to understand effects of ginseng(hearinafter ; GS, Panax Ginseng) extract on regeneration responses on injured sciatic nerves in rats. Methods :Using white mouse, we damaged sciatic nerve & central nerve, and then applied GS to the lesion. Then we observed regeneration of axon and non-neuron. Results : 1. NF-200 protein immunostaining for the visualization of axons showed more distal elongation of sciatic nerve axons in GS-treated group than saline-treated control 3 and 7 days after crush injury. 2. GAP-43 protein was increased in the injured sciatic nerve and further increased by GS treatment. Enhanced GAP-43 protein signals were also observed in DRG prepared from the rats given nerve injury and GS treatment. 3. GS treatment in vivo induced enhanced neurite outgrowth in preconditioned DRG sensory neurons. In vitro treatment of GS on sensory neurons from intact DRG also caused increased neurite outgrowth. 4. Phospho-Erk1/2 protein levels were higher in the injured nerve treated with GS than saline. Phospho-Erk1/2 protein signals were mostly found in the axons in the injured nerve. 5. NGF and Cdc2 protein levels showed slight increases in the injured nerves of GS-treated group compared to saline-treated group. 6. The number of Schwann cell population was significantly increased by GS treatment in the injured sciatic nerve. GS treatment with cultured Schwann cells increased proliferation and Cdc2 protein signals. 7. GS pretreatment into the injured spinal cord generated increased astrocyte proliferation and oligodendrocytes in culture. In vitro treatment of GS resulted in more differentiated pericytoplasmic processes compared with saline treatment. 8. More arborization around the injury cavity and the occurrence at the caudal region of CST axons were observed in GS-treated group than in saline-treated group. Conclusion :GS extract may have the growth-promoting activity on regenerating axons in both peripheral and central nervous systems.

  • PDF

신경재생을 위한 BDNF를 함유한 PLGA 지지체의 제조 및 방출 (Preparation and BDNF Release Profile of BDNF-loaded PLGA Scaffolds for Tissue Engineered Nerve Regeneration)

  • 김초민;김순희;오아영;김근아;이일우;이종문;강길선
    • 폴리머
    • /
    • 제32권6호
    • /
    • pp.529-536
    • /
    • 2008
  • 뇌 추출 신경성장인자(BDNF)의 서방성 전달체로써 락타이드-글리콜라이드 공중합체(PLGA) 용액에 탈미네랄화된 골분(DBP) 및 히알루론산(HA)를 균일하게 혼합하여 얼음입자추출법으로 다공성 지지체를 제조하였다. ELISA로 BDNF 방출량을 확인하였으며 SEM으로 방출에 따른 지지체의 다공 특성을 관찰하였다. PLGA지지체와 비교시 DBP/HA/PLGA 지지체에서 지속적으로 일정량이 방출됨을 확인하였으며 BDNF의 양이 증가할수록 빠르고 많은 양이 방출되는 패턴을 보였다. 얼음입자추출법으로 제조된 DBP/HH/PLGA 지지체는 BDNF 등의 수용성 사이토카인의 포접이 용이하고, 생분해성 고분자분해 특성에 의해서 방출이 조절되며, 신경손상부분에 이식시 BDNF가 서방화되어 신경재생에 도움을 줄 것으로 기대된다.