• Title/Summary/Keyword: spin-up time

Search Result 58, Processing Time 0.026 seconds

Dynamics of a Rotating Cantilever Beam Near Its Critical Angular Speed (임계각속도 주변에서의 회전 외팔보의 동역학)

  • Choe, Chang-Min;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1231-1237
    • /
    • 2000
  • Dynamics of a rotating cantilever beam near its critical angular speed is investigated in this paper. The external, force is idealized as a periodic function which has the same period as the rotati ng frequency of the beam. The equations of motion are derived and transformed into a dimensionless form. A prescribed spin-up motion is employed for the rotating motion. Numerical study shows that the steady state and the transient responses of the beam are affected by the spin-up time constant and there exists a time constant at which the maximum transient response becomes minimum.

Preparation and Characterization of $Ge_{20}As_{20}Se_{60}$ Amorphous Chalcogenide Thin Film by Spin Coating (Spin-coating에 의한 $Ge_{20}As_{20}Se_{60}$ 비정질 chalcogenide 박막의 제조 및 광특성 분석)

  • 이강구;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.219-226
    • /
    • 2000
  • Amorphous Ge20As20Se60 chalcogenide thin films were prepared by spin coating technique from mixed solutions of As40Se60 and Ge40Se60 dissolved in ethylenediamine. Films were prepared at a roating speed of 3500 rpm and spinning time was 10 second and heat-treateed at 27$0^{\circ}C$ for 1 hour. The resulting film thickness and RMS roughness were approximately 340 nm and 15$\AA$. Photostructure changes were investigated with 514.5nm Ar+ laser irradiation and heat-treatment. After Ar+ laser irradiation, transmittance and transmission efficiency decreased respectively up to 24.9% at 2.43 eV and 67.5% at 3.27 eV, and absorption edge shifted toward long wavelength. Optical bandgap changed from 2.03 to 1.83 eV, and absoprtion coefficient and absorption efficiency increased up to 0.33$\times$105cm-1 at 3.37eV and 88.3% at 1.31 eV, respectively. These photodarkening state were recovered reversibly by heat-treatment at 27$0^{\circ}C$ for 1 hour. Photodarkening and thermal bleaching effects by laser irradiation and heat-treatment revealed reversible amorphous-to-amorphous transition varying only coordination number.

  • PDF

Evolution of Spin and Superorbital Modulation in 4U 0114+650

  • Hu, Chin-Ping;Ng, Chi-Yung;Chou, Yi
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.173-176
    • /
    • 2016
  • We report on a systematic analysis of the spin and superorbital modulations of the high-mass X-ray binary 4U 0114+650, which consists of the slowest spinning neutron star known. Utilizing dynamic power spectra, we found that the spin period varied dramatically during the RXTE ASM and Swift BAT observations. This variation consists of a long-term spin-up trend, and two ~1,000 day and one ~600 day random walk epochs previously, MJD 51,000, ~MJD 51,400-52,000, and ~MJD 55,100-56,100. We further found that the events appear together with depressions of superorbital modulation amplitude. This provides evidence of the existence of an accretion disk, although the physical mechanism of superorbital modulation remains unclear. Furthermore, the decrease of the superorbital modulation amplitude may be associated with the decrease of mass accretion rate from the disk, and may distribute the accretion torque of the neutron star randomly in time.

Ground State Computation of Interacting Fermion Systems by using Advanced Stochastic Diagonalization (진보된 혼돈 대각화 방법을 이용한 상호작용하는 페르미온 계의 기저상태 계산)

  • Ahn, Sul-Ah;Cho, Myoung Won
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.209-211
    • /
    • 2007
  • The computational time of Stocahstic Diagonalization (SD) calculation for 2-dimensional interacting fermion systems is reduced by using several methods including symmetry operations. First, each lattice is subdivided into spin-up and spin-down lattices separately, thus allowing a bi-partite lattice. A valid basis state is then obtained from stacking up an up-spin configuration on top of a down-spin configuration. As a consequence, the memory space to be used in saving the trial basis state reduces significantly. Secondly, the matrix elements of a Hamiltonianin are reconrded in a look-up table when making basis state set. Thus the repeated calculation of the matrix elements of the Hamiltonian are avoided during SD process. Thirdly, by applying symmetry operations to the basis state set the original basis state is transformed to a new basis state whose elements are the eigenvectors of the symmetry operations. The ground state wavefunction is constructed from the elements of symmetric - bonding state - basis state set. As a result, the total number of basis states involved in SD calculation is reduced upto 50 percentage by using symmetry operations.

  • PDF

Multi-Prame MQD-PIV

  • Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1552-1562
    • /
    • 2003
  • In this paper, we propose a new PIV methodology for obtaining a velocity field from a sequence of multiple image data based on a least-square principle (also known as MQD; minimum quadratic difference) for the grey level difference between two neighboring frames of image data. We investigated both the accuracy of the result and the time consumption in the computation. It turns out that the proposed method is not only accurate but fast compared with the conventional correlation PIV techniques. Our method is applied to the spin-up flows and the results show that the method can be a good substitution for the conventional algorithms employed in the existing commercial codes.

EVOLUTION OF ORBIT AND ROTATION OF A PSEUDO-SYNCHRONOUS BINARY SYSTEM ON THE MAIN SEQUENCE

  • Li, Lin-Sen
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.1
    • /
    • pp.1-4
    • /
    • 2018
  • We study the pseudo-synchronous orbital motion of a binary system on the main sequence. The equations of the pseudo-synchronous orbit are derived up to $O(e^4)$ where e is the eccentricy of the orbit. We integrate the equations to present their solutions. The theoretical results are applied to the evolution of the orbit and spin of the binary star Y Cygni, which has a current eccentricity of $e_0\;=\;0.142$. We tabulate our numerical results for the evolution of the orbit and spin per century. The numerical results for the semi-major axes and rotational angular velocities in the evolutional time scales of three stages (synchronization, circularization, and collapse time scale) are also tabulated. Synchronization is achieved in about $5{\times}10^3\;years$ followed by circularization lasting about $1{\times}10^5\;years$ before decaying in $2{\times}10^5\;years$.

The ALTADENA and PASADENA studies in benchtop NMR spectrometer

  • So, Howon;Jeong, Keunhong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.1
    • /
    • pp.6-11
    • /
    • 2019
  • Parahydrogen induced hyperpolarization (PHIP) technique is extensively studied to increase the sensitivity of the conventional NMR spectroscopy and recently try to apply this advanced technique into the revolutionary future of the MRI. The other hyperpolarization technique, which is widely utilized, is DNP (Dynamic Nuclear Polarization)-based hyperpolarization one. Despite its great advances in these fields, it contains several drawbacks to overcome: fast relaxation time, expensive equipment is needed, long build-up time is required (several hours), and batch scale material is hyperpolarized. To overcome all those limitations, one can effectively harness the hyperpolarized spin state of parahydrogen. One important step for utilizing the spin state of parahydrogen is doing well-developed experiments of ALTADENA and PASADENA. Based on those concepts, we successfully obtain the hydrogenation signals of ALTADENA and PASADENA from styrene by using benchtop NMR spectrometer. Also those signals were conceptually analyzed and confirmed with different mechanisms. To our best knowledge, those experiments using 1.4T (benchtop NMR) is the first reported one. Considering these experiments, we hope that parahydrogen-based hyperpolarization transfer studies in NMR/MRI will be broadened in Korea in the future.

Onset of Inertial Oscillation in a Rotating Flow (회전유동에서의 관성진동 원인규명)

  • Park, Jun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2536-2539
    • /
    • 2008
  • A study has been made on how to occur inertial oscillations in a rotating flow. The flow is considered to be induced by differentially-rotating top and bottom disks with infinite radius. The top and bottom disks are assumed to be set in motion over a finite initial start-up time duration from initial solid body rotation ($\Omega$) to each finial state, i.e., the top disk is rotating at the angular velocity (${\Omega}+{\Delta}{\Omega}$) and the bottom disk (${\Omega}-{\Delta}{\Omega}$). The system Reynolds number, which is a reciprocal of conventional Ekman number in rotating flows, is very high so that a boundary layer flow near disks is pronounced. From a strict theoretical analysis, it is clearly found the fact that inertial oscillation in a rotating flow is caused by excessive input of torque during start-up phase. Above finding comes from the following physics of theoretical result: in the case of abrupt start-up within very shorter time-duration than spin-up time scale, the inertial oscillation is magnified but it could be completely depressed in the case of mildly accelerated start-up, i.e., start-up process being established over diffusion time scale.

  • PDF

Numerical Study on the Motion of Azimuthal Vortices in Axisymmetric Rotating Flows

  • Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.313-324
    • /
    • 2004
  • A rich phenomenon in the dynamics of azimuthal vortices in a circular cylinder caused by the inertial oscillation is investigated numerically at high Reynolds numbers and moderate Rossby numbers. In the actual spin-up flow where both the Ekman circulation and the bottom friction effects are included, the first appearance of a seed vortex is generated by the Ekman boundary-layer on the bottom wall and the subsequent roll-up near the corner bounded by the side wall. The existence of the small vortex then rapidly propagates toward the inviscid region and induces a complicated pattern in the distribution of azimuthal vorticity, i.e. inertial oscillation. The inertial oscillation however does not deteriorate the classical Ekman-pumping model in the time scale larger than that of the oscillatory motion. Motions of single vortex and a pair of vortices are further investigated under a slip boundary-condition on the solid walls. For the case of single vortex, repeated change of the vorticity sign is observed together with typical propagation of inertial waves. For the case of a pair of vortices with a two-step profile in the initial azimuthal velocity, the vortices' movement toward the outer region is resisted by the crescent-shape vortices surrounding the pair. After touching the border between the core and outer regions, the pair vortices weaken very fast.

Total Cross Sections for Kilovolt Neutrons of Even-Odd Nuclei in the Region of the 3s Strength-Function Resonances

  • Mann-Cho;Bak, Hae-Ill;F.H. Frohner;K.N. Muller
    • Nuclear Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.241-248
    • /
    • 1970
  • Neutron total cross sections of seperated isotopes were measured with the time-of-flight spectrometer at the 3 MeV Karlsruhe Van do Graaff Accelerator. The neutron energy ranged from 10 to 250 keV. The energy resolution was between 0.2 and 0.5 nsce/m. The measured cross sections were-shape-analyzed in terms of an R-matrix multilevel formula. Thus neutron widths and spins for up to 50 resonances per isotope could be determined. Average neutron widths, level densities and strength functions were derived. The spin dependence of strength functions and the distribution of widths and spacings were investigated.

  • PDF