• 제목/요약/키워드: spin-structure

검색결과 727건 처리시간 0.028초

온도 영향에 따른 Myosin Head의 SH 구조 변화 연구 (A Study on the SH Structure Change of Myosin Head by Temperature Effect)

  • 김덕술;송주영
    • 생명과학회지
    • /
    • 제9권6호
    • /
    • pp.646-652
    • /
    • 1999
  • The effect of temperature on the structure change of the SH of myosin head have been investigated with improved resolution by x-ray diffraction using synchrotron radiation. The movement of myosin head and conformational change of contractile molecules were occurred in the muscle contraction. IASL (iodo acetamide) and MSL (maleimide) disordered the orderly helix arrangement of myosin in the rest state of spin level. The temperature effect on the structure change was great at the UL in the equatorial reflection. But those of IASL and MSL were minor. Equatorial reflection (10, 11) change inferred that myosin head was moved to the vicinity of actin filament by temperature change (from $25^{\circ}C$ to $0^{\circ}C$) at UL, but spin level was not changed. The intensity change of 143 $\AA$ and 72 $\AA$ could offer information of the mass profection of population of myosin heads along the filament axis. The slope of intensity profile of the mass profection of 143$\AA$ and reflection of MSL is appeared sharply and those of UL and IASL were not changed. The decrease of MSL actin reflection at 51 $\AA$ and 59 $\AA$ in the actin reflection change refers that the shifted myosin head binds a certain actin or changes an actin structure. From these results, we could conclude that IASL and MSL were spin labeled on SH of myosin head and disordered the helix arrangement of actin.

  • PDF

MAGNETORESISTANCE OF NiFeCo/Cu/NiFeCo/FeMn MULTILAYERED THIN FILMS WITH LOW SATURATION FIELD

  • Bae, S.T.;Min, K.I.;Shin, K.H.;Kim, J.Y.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.570-574
    • /
    • 1995
  • Magnetoresistance of NiFeCo/Cu/NiFeCo/FeMn uncoupled exchange biased sandwiches has been studied. The magnetoresistance change ratio, ${\Delta}R/R_{s}$ showed 4.1 % at a saturation field as low as 11 Oe in $Si/Ti(50\;{\AA})/NiFeCo(70\;{\AA})/Cu(23\;{\AA})/NiFeCo(70\;{\AA})/FeMn(150\;{\AA})/Cu(50\;{\AA})$ spin valve structure. In this system, the magnetoresistance was affected by interlayer material and thickness. When Ti and Cu were used as the interlayer material in this structure, maximum magnetoresistance change ratio were 0.32 % and 4.1 %, respectively. 6.1 % MR ratio was obtained in $Si/Ti(50\;{\AA})/NiFeCo(70\;{\AA})/Cu(15\;{\AA})/NiFeCo(70\;{\AA})/FeMn(150\;{\AA})/Cu(50\;{\AA})$ spin valve structure. The magnetoresistance change ratio decreased monotonically as the interlayer thickness increased. It was found that the exchange bias field exerted by FeMn layer to the adjacent NiFeCo layer was ~25 Oe, far smaller than that reported in NiFe/Cu/NiFe/FeMn spin valve structure(Dieny et. al., ~400 Oe). The relationship between the film texture and exchange anisotropy ha been examined for spin valve structures with Ti, Cu, or non-buffer layer.

  • PDF

Effect of in-Plane Magnetic Field on Rashba Spin-Orbit Interaction

  • Choi, Won Young;Kwon, Jae Hyun;Chang, Joonyeon;Han, Suk Hee;Koo, Hyun Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.394-394
    • /
    • 2013
  • The spin-orbit interaction has received great attention in the field of spintronics, because of its property and applicability. For instance, the spin-orbit interaction induces spin precession which is the key element of spin transistor proposed by Datta and Das, since frequency of precession can be controlled by electric field. The spin-orbit interaction is classified according to its origin, Dresselhaus and Rashba spin-orbit interaction. In particular, the Rashba spin-orbit interaction is induced by inversion asymmetry of quantum well structure and the slope of conduction band represents the strength of Rashba spin-orbit interaction. The strength of spin-orbit interaction is experimentally obtained from the Shubnikov de Hass (SdH) oscillation. The SdH oscillation is resistance change of channel for perpendicular magnetic field as a result of Zeeman spin splitting of Landau level, quantization of cyclotron motion by applied magnetic field. The frequency of oscillation is different for spin up and down due to the Rashba spin-orbit interaction. Consequently, the SdH oscillation shows the beat patterns. In many research studies, the spin-orbit interaction was treated as a tool for electrical manipulation of spin. On the other hands, it can be considered that the Rashba field, effective magnetic field induced by Rashba effect, may interact with external magnetic field. In order to investigate this issue, we utilized InAs quantum well layer, sandwiched by InGaAs/InAlAs as cladding layer. Then, the SdH oscillation was observed with tilted magnetic field in y-z plane. The y-component (longitudinal term) of applied magnetic field will interact with the Rashba field and the z-component (perpendicular term) will induce the Zeeman effect. As a result, the strength of spin-orbit interaction was increased (decreased), when applied magnetic field is parallel (anti-parallel) to the Rashba field. We found a possibility to control the spin precession with magnetic field.

  • PDF

Spin Coating 법을 이용한 $VF_2$-TrFE/Si(100) 구조의 제작 및 특성 (Fabrication and Properties of $VF_2$-TrFE/Si(100) Structure by using Spin Coating Method)

  • 이우석;정상현;곽노원;김가람;윤형선;김광호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.115-116
    • /
    • 2008
  • The ferroelectric vinylidene fluoride-trifluoroethylene ($VF_2$-TrFE) and $Al_2O_3$ passivation layer for the Metal/Insulator/Ferroelectric/Semiconductor (MIFS) structure were deposited using spin coating and remote plasma atomic layer deposition (RPALD), respectively. A 2.5 ~ 3 wt % diluted solution of purified vinylidene fluoride-trifluoroethylene ($VF_2$: TrFE=70:30) in a DMF solution were prepared and deposited on silicon wafer at a optimized spin speed. After annealing in a vacuum ambient at 150 ~ $200^{\circ}C$ for 60 min, upper insulator layer were deposited at temperature ranging from 100 ~ $150^{\circ}C$ by RPALD. We described electrical and structural properties of MIFS fabricated by spin coating and RPALD methods.

  • PDF

Determination of Strongly Interacting Spin Exchange Path and Spin Lattice Model of (VO)2(H2O){O3P-(CH2)3-PO3}ㆍ2H2O on the Basis of Spin Dimer Analysis

  • Kim, Dae-Hyun;Koo, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1665-1668
    • /
    • 2010
  • The spin exchange interactions of $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$ were examined by spin dimer analysis based on extended Huckel tight binding method. The strongest spin exchange interaction occurs through the super-superexchange path $J_2$ and the second strongest spin exchange interaction occurs through the superexchange interaction path $J_1$. There are two strongly interacting spin exchange paths in $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$. Therefore, magnetic susceptibility curve of $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$ can be well reproduced by an alternating onedimensional antiferromagnetic chain model rather than an isolated spin dimer model.

전이금속산화물 클러스터의 자기구조 및 자기이방성에너지 계산 (The Magnetic Structure and Magnetic Anisotropy Energy Calculations for Transition Metal Mono-oxide Clusters)

  • 박기택
    • 한국자기학회지
    • /
    • 제21권1호
    • /
    • pp.1-4
    • /
    • 2011
  • 정육면체 전이금속 산화물 FeO, MnO의 자기적 상호작용을 제1원리의 범밀도함수법을 이용하여 계산하였다. 그 결과, 모두 초교환작용으로 인해 반강자성적 상호작용이 가장 낮은 에너지를 가지고 있었다. 자기이방성은 반강자성 스핀 배열의 FeO 클러스터에서만 발견되었다. 그 원인은 <111> 방향으로 각운동량을 가지는 3d down-spin 전자의 스핀-궤도 결합에 기인하였다.

Electronic Structures and Noncollinear Magnetic Properties of Structurally Disordered Fe

  • Park, Jin-Ho;Min, B.I.
    • Journal of Magnetics
    • /
    • 제15권1호
    • /
    • pp.1-6
    • /
    • 2010
  • The magnetic properties of amorphous Fe were investigated by examining the electronic structures of structurally disordered Fe systems generated from crystalline bcc and fcc Fe using a Monte-Carlo simulation. As a rst principles band method, the real space spin-polarized tight-binding linearized-mun-tin-orbital recursion method was used in the local spin density approximation. Compared to the crystalline system, the electronic structures of the disordered systems were characterized by a broadened band width, smoothened local density of states, and reduced local magnetic moment. The magnetic structures depend on the short range configurations. The antiferromagnetic structure is the most stable for a bcc-based disordered system, whereas the noncollinear spin spiral structure is more stable for a fcc-based system.