• Title/Summary/Keyword: spin state

Search Result 337, Processing Time 0.032 seconds

3 Dimensional Modeling and Sensitivity Analysis for Vibration Reduction of the Spin-Coater System

  • Park, Jin-Bae;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.170.2-170
    • /
    • 2001
  • In this paper, the dynamic system modeling and the state sensitivity analysis of the spin-coater system for the reduction of the vibration are proposed. In the respect of modeling, the spin-coater system is composed of components of servomotor, belt, spindle, and a supported base. Each component is defined and combined modeling is derived to 3dimensional equations. Verification of modeling is verified by experimental values of actual system in the frequency domain. By direct differentiation the constraint equations with respect to kinematic design variables, such as eccentricity of spindle, moment of inertia, torsional stiffness and damping of supported base, sensitivity equations are derived to the verified state equations. Sensitivity of design variables could be used for vibration reduction and natural frequency shift in the frequency domain. Finally, dominant design variables ...

  • PDF

SPIN POLARIZED PHOTOEMISSION AND MAGNETIC CIRCULAY DICHROISM STUDY OF FeAl THIN FILMS

  • Kim, K.W.;Kudryavtsev, Y.V.;Chang, G.S.;Whang, C.N.;Lee, Y.P.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.53-58
    • /
    • 1997
  • It is well known that the equiatomic FeAl alloy crystallizes in a paramagnetic CsCl structure and is very stable in a wide temperature range owing to a significant charge transfer from Al to Fe. A presence of structural defects normally enhances the magnetic and magneto-optical properties of this alloy. In this study spin-resolved photoemission and magnetic circular dichroism (MCD) were carried out on both ordered and disordered $Fe_{0.52}Al_{0.48}$ alloy films. The disordered state in the alloy films was obtained by a vapor quenching deposition on cooled substrates. It is shown that the order-disorder transition in the Fe0.52Al0.48 alloy films leads to a significant change in the spin polarization. Form the MCD results the orbital and spin magnetic moments of the constituent atoms are obtained. According to the sum rule the spin and orbital magnetic moments of Fe in the disordered FeAl film are $\mu\frac{SR}{spin}=0.8\mu_B$ and $\mu\frac{SR}{orb}=0.14\mu_B$ respectively. The spin magnetic moment is also evaluated to be $\mu\frac{BR}{spin}=0.77\mu_B$ by the branching ration method employing a photon polarization of 90%.

  • PDF

A Study on the X-ray Diffraction of Rabbit Glycerin Muscle by Spin Labeled on SH (SH에 Spin Label한 Rabbit Glycerin처리근육의 X선 회절에 관한 연구)

  • 김덕술;송주영
    • Journal of Life Science
    • /
    • v.8 no.6
    • /
    • pp.681-686
    • /
    • 1998
  • IASL(iodo acetamide) and MSL(maleimide) disordered the orderly helix arrangement of myosin in the rest state of spin level. Especially the effect of IASL was great. Equatorial reflection(10,11) change inferred that myosin head was moved to the vicinity of actin filament by spin level. The intensity change of 143 $\AA$ and 72 $\AA$ could offer infor-mation of the mass projection of population of myosin heads along the filament axis. The slope of intensity profile of the mass projection of 143 $\AA$ and reflection of IASL is appeared and that of MSL is appeared sharply. The dec-rease of 215 $\AA$ reflection intensity the periodical characteristic of 143 $\AA$ reflection by spin label. The raise of MSL actin reflection at 51 $\AA$ and 59 $\AA$ in the actin reflection change refers that the shifted myosin head binds a certain actin or changes an actin structure by spin label effect. Because iodo acetamide has a tendency to decease the actin reflection, actin dose not bind myosin head. From this result, we could conclude that LASL and MSL are spin labeled on SH of myosin head and disordered the helix arrangement of actin.

  • PDF

Ferromagnetic Heterostructures based on Semiconductors

  • Tanaka, M.;Sugahara, S.;Nazmul, A.M.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.262-262
    • /
    • 2003
  • Creating a new spin-based electronics (often called "spin-electronics" or "spintronics") is one of the hot topics in the current solid-state physics and electronics research. In order to utilize the spin degree of freedom in solids, particularly in semiconductors the current electronics is based on, we need to fabricate appropriate materials, understand and control the spin-dependent phenomena. In this ta1k, I will review the recent deve1opments of epitaxial ferromagnetic hetero structures based on semiconductors towards spintronics. This includes the semiconductor materials and hetero structures having high ferromagnetic transition temperature (III-V based alloy magnetic semiconductors, Mn-delta-doped magnetic semiconductors, and related heterostructures), spin-dependent transport and tunneling, and their device applications (tunneling magnetoresistance devices and three-terminal devices). Future issues and prospects will be also discussed.

  • PDF

Efficiency Factors of Singlet Oxygen Generation from Core-Modified Expanded Porphyric : Tetrathiarubyrin in Ethanol

  • Ha, Jeong Hyeon;Jeong, Guk Yeong;Kim, Min Seon;Lee, Yang Hun;Sin, Gu;Kim, Yong Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.63-67
    • /
    • 2001
  • The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended ${\pi}conjugation$, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended $\pi-conjugation$, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 $\pm$ 0.10 and the triplet state lifetime was shortened to 7.0 $\pm$ 1.2 ${\mu}s$. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 $\pm$ 0.02, which is somewhat lower than expected. On the other hand, the efficiency of singlet oxygen generation during the oxygen quenching of triplet state, $f{\Delta}^T$, is near unity. Such high efficiency of singlet oxygen generation can be explained by the following two possible factors: The hydrogen bonding of ethanol which impedes the deactivation pathway of the charge transfer complex with oxygen to the ground state, the less probability of the aggregation formation.

Dual positional substrate specificity of rice allene oxide synthase-1: insight into mechanism of inhibition by type II ligand imidazole

  • Yoeun, Sereyvath;Rakwal, Randeep;Han, Oksoo
    • BMB Reports
    • /
    • v.46 no.3
    • /
    • pp.151-156
    • /
    • 2013
  • Phylogenetic and amino acid sequence analysis indicated that rice allene oxide synthase-1 (OsAOS1) is CYP74, and is clearly distinct from CYP74B, C and D subfamilies. Regio- and stereo-chemical analysis revealed the dual substrate specificity of OsAOS1 for (cis,trans)-configurational isomers of 13(S)- and 9(S)-hydroperoxyoctadecadienoic acid. GC-MS analysis showed that OsAOS1 converts 13(S)- and 9(S)-hydroperoxyoctadecadi(tri)enoic acid into their corresponding allene oxide. UV-Visible spectral analysis of native OsAOS1 revealed a Soret maximum at 393 nm, which shifted to 424 nm with several clean isobestic points upon binding of OsAOS1 to imidazole. The spectral shift induced by imidazole correlated with inhibition of OsAOS1 activity, implying that imidazole may coordinate to ferric heme iron, triggering a heme-iron transition from high spin state to low spin state. The implications and significance of a putative type II ligand-induced spin state transition in OsAOS1 are discussed.

The Spin State of NPA Rotator (5247) Krylov

  • Lee, Hee-Jae;Durech, Josef;Kim, Myung-Jin;Moon, Hong-Kyu;Kim, Chun-Hwey;Park, Jintae;Kim, Dong-Heun;Roh, Dong-Goo;Choi, Young-Jun;Yim, Hong-Suh;the DEEP-South Team
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.50.1-50.1
    • /
    • 2017
  • The Non-Principal Axis (NPA) rotators can be clues to spin evolutionary processes of asteroids because their excited spin states evolve due to either internal or external forces. The NPA rotation of (5247) Krylov was confirmed by Lee et al. (2017) based on KMTNet photometric observations during the 2016 apparition. We conducted follow-up observations in 2017 apparition using the 0.6-2.1m telescopes in the northern hemisphere to determine the spin state and shape model of this asteroid. We found that it is rotating in the Short Axis Mode (SAM) based on the determined rotation period ($P_{\psi}=374.6hr$) and precession period ($P_{\phi}=67.48hr$). The greatest and intermediate principal inertia moments are nearly the same as $I_b/I_c=0.94$, but the smallest principal inertia moments are nearly half that of the others, $I_a/I_c=0.43$. This ratio of principal inertia moments suggests that dynamically equivalent shape of this asteroid is close to that of a prolate ellipsoid. In this presentation, we will provide the physical model of (5247) Krylov to discuss its possible spin evolutionary processes that acted on its spin.

  • PDF

Magnetic Semiconductors Thin Films-Unidirectional Anisotropy

  • Lubecka, M.;Maksymowicz, L.J.;Szymczak, R.;Powroznik, W.
    • Journal of Magnetics
    • /
    • v.4 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • Unidirectional magnetic anisotropy field ($H_an$) was investigated for thin films of $CdCr{2-2x}In_{2X}Se_4 (0$\leq$x$\leq$0.2). This anisotropy originates from the microscopic anisotropic Dzyaloshinskii-Moriya (DM) interaction which arise from the spin-orbit scattering of the conduction electrons by the nonmagnetic impurities. This interaction maintains the remanent magnetization in the direction of the initial applied field. Then the single easy direction of the magnetization is parallel to the direction of the magnetic field. The anisotropy produced by field cooling is unidirectional I.e. the spins system deeps some memory of the cooling field direction. The chalcogenide spinel of$ CdCr_{2-2x}In){2X}Se_4$belongs to the class of the magnetic semiconductors. The magnetic disordered state is obtained when ferromagnetic structure is diluted by In. Then we have the mixed phase characterised by coexistence the magnetic long range ordering (IFN-infinite ferromagnetic network) and the spin glass order (Fc-finite clusters). The total magnetic anisotropy energy depends on the state of magnetic ordering. In our study we concentrated on the magnetic state with reentrant transition and spin glass state. The polycrystalline $ CdCr_{2-2x}In){2X}Se_4$ thin films were obtained by rf sputtering technique. We applied the ferromagnetic resonance (FMR) and M-H loop techniques for determining the temperature composition dependencies of Han. From the experimental data, we have found that Han decreases almost linearly when temperature is increased and in the low temperature is about three times bigger at SG state with comparison to the state with REE.

  • PDF

Perpendicular Spin-transfer Torque in Asymmetric Magnetic Tunnel Junctions: Material Parameter Dependence (비대칭 자기터널접합에서의 수직 스핀 전달 토크: 물질 변수에 대한 의존성)

  • Han, Jae-Ho;Lee, Hyun-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.52-55
    • /
    • 2011
  • Spin-transfer torque is a useful tool to control the magnetic state in nanostructures. In magnetic tunnel junctions, the spin-transfer torque has two components, the in-plane spin torque and the perpendicular spin torque. While properties of the in-plane spin-transfer torque are relatively well understood, properties of the perpendicular spin-transfer torque still remain controversial. A recent experiment demonstrated that in asymmetric magnetic tunnel junctions, the bias voltage dependence of the perpendicular spin-transfer torque contains both linear and quadratic terms in the bias. However it still remains unexplored how the bias voltage dependence changes as a function of material parameters. In this paper, we systematically investigate the perpendicular spin-transfer torque in asymmetric magnetic tunnel junction by varying spin splitting energy, work function difference, and Fermi energy of the ferromagnetic metal leads.