• Title/Summary/Keyword: spin selectivity

Search Result 8, Processing Time 0.026 seconds

The Link Between Stereoselectivity and Spin Selectivity in Intermolecular and Intramolecular Photochemical Reactions

  • Griesbeck, Axel G.
    • Journal of Photoscience
    • /
    • v.10 no.1
    • /
    • pp.49-60
    • /
    • 2003
  • How stereo selectivity in singlet and triplet photocycloaddition and photocyclization reactions, respectively, is linked to spin selectivity and how this link affects our understanding of photochemical reaction mechanisms, is described in this review. As illustrative examples, the Paterno-Buchi reaction and the Norrish-Yang cyclization are described with emphasis on triplet biradical structure and dynamics.

  • PDF

Molecular Motions of [N(C2H5)4]+ and [N(CH3)4]+ ions by 1H Nuclear Magnetic Resonance Relaxation in [N(C2H5)4]2CoCl4 and [N(CH3)4]2CoCl4 Single Crystals

  • Yoon, Su-A;Lim, Ae-Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.2
    • /
    • pp.146-156
    • /
    • 2011
  • The line widths and spin-lattice relaxation times of protons in $[N(C_2H_5)_4]_2CoCl_4$ and $[N(CH_3)_4]_2CoCl_4$ single crystals were investigated in the temperature range 160-400 K. The temperature dependences of the spin-lattice relaxation times are attributed to the molecular motions of the ethyl and methyl groups in the $[N(C_2H_5)_4]^+$ and $[N(CH_3)_4]^+$ ions respectively. The NMR line widths indicate that the ethyl groups in $[N(C_2H_5)_4]_2CoCl_4$ have one more degree of freedom than the methyl groups in $[N(CH_3)_4]_2CoCl_4$. The experimental results are interpreted in terms of the reorientations of the methyl and ethyl groups.

In-Situ Dry-cleaning (ISD) Monitoring of Amorphous Carbon Layer (ACL) Coated Chamber

  • Lee, Ho-Jae;Park, George O.;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.183-183
    • /
    • 2012
  • In the era of 45 nm or beyond technology, conventional etch mask using photoresist showed its limitation of etch mask pattern collapse as well as pattern erosion, thus hard mask in etching became necessary for precise control of etch pattern geometry. Currently available hard mask materials are amorphous carbon and polymetric materials spin-on containing carbon or silicon. Amorphous carbon layer (ACL) deposited by PECVD for etch hard mask has appeared in manufacturing, but spin-on carbon (SOC) was also suggested to alleviate concerns of particle, throughput, and cost of ownership (COO) [1]. SOC provides some benefits of reduced process steps, but it also faced with wiggling on a sidewall profile. Diamond like carbon (DLC) was also evaluated for substituting ACL, but etching selectivity of ACL was better than DLC although DLC has superior optical property [2]. Developing a novel material for pattern hard mask is very important in material research, but it is also worthwhile eliminating a potential issue to continuously develop currently existing technology. In this paper, we investigated in-situ dry-cleaning (ISD) monitoring of ACL coated process chamber. End time detection of chamber cleaning not only provides a confidence that the process chamber is being cleaned, but also contributes to minimize wait time waste (WOW). Employing Challenger 300ST, a 300mm ACL PECVD manufactured by TES, a series of experimental chamber cleaning runs was performed after several deposition processes in the deposited film thickness of $2000{\AA}$ and $5000{\AA}$. Ar Actinometry and principle component analysis (PCA) were applied to derive integrated and intuitive trace signal, and the result showed that previously operated cleaning run time can be reduced by more than 20% by employing real-time monitoring in ISD process.

  • PDF

Synthesis and Etch Characteristics of Organic-Inorganic Hybrid Hard-Mask Materials (유-무기 하이브리드 하드마스크 소재의 합성 및 식각 특성에 관한 연구)

  • Yu, Je-Jeong;Hwang, Seok-Ho;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1993-1998
    • /
    • 2011
  • Semiconductor industry needs to have fine patterns in order to fabricate the high density integrated circuit. For nano-scale patterns, hard-mask is used to multi-layer structure which is formed by CVD (chemical vaporized deposition) process. In this work, we prepared single-layer hard-mask by using organic-inorganic hybrid polymer for spin-on process. The inorganic part of hard-mask was much easier etching than photo resist layer. Beside, the organic part of hard-mask was much harder etching than substrate layer. We characterized the optical and morphological properties to the hard mask films using organic-inorganic hybrid polymer, and then etch rate of photo resist layer and hard-mask film were compared. The hybrid polymer prepared from organic and inorganic materials was found to be useful hard-mask film to form the nano-patterns.

Room Temperature Hydrogen Gas Sensor Based on Carbon Nanotube Yarn (상온감지 가능한 탄소나노튜브 방적사 기반의 수소 감지 센서)

  • Kim, Jae Keon;Lee, Junyeop;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.132-136
    • /
    • 2018
  • We report the development of a room-temperature hydrogen ($H_2$) gas sensor based on carbon nanotubes (CNT) yarn. To detect $H_2$ gas in room temperature, a highly ordered CNT yarn was placed on a substrate from a spin-capable CNT forest, followed by the deposition of a platinum (Pt) layer on surface of the CNT yarn. To examine the effect of the Pt-layer on the response of the CNT sensor, a comparative sensing performance was characterized on both the Pt deposited and non-deposited CNT yarn at room temperature. The Pt-CNT yarn yielded high response, whereas the non-deposited CNT yarn showed negligible response for $H_2$ detection at room temperature. Pt is a reliable and efficient catalyst that can substantially improve the detection of $H_2$ gas by chemical sensitization via a "spillover" effect. It can be efficiently utilized to increase the sensitivity and selectivity as well as to obtain fast response and recovery times.

Flexible Hydrogen Sensor Using Ni-Zr Alloy Thin Film

  • Yun, Deok-Whan;Park, Sung Bum;Park, Yong-il
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.297-303
    • /
    • 2019
  • A triple-layered $PMMA/Ni_{64}Zr_{36}/PDMS$ hydrogen gas sensor using hydrogen permeable alloy and flexible polymer layers is fabricated through spin coating and DC-magnetron sputtering. PDMS(polydimethylsiloxane) is used as a flexible substrate and PMMA(polymethylmethacrylate) thin film is deposited onto the $Ni_{64}Zr_{36}$ alloy layer to give a high hydrogen-selectivity to the sensor. The measured hydrogen sensing ability and response time of the fabricated sensor at high hydrogen concentration of 99.9 % show a 20 % change in electrical resistance, which is superior to conventional Pd-based hydrogen sensors, which are difficult to use in high hydrogen concentration environments. At a hydrogen concentration of 5 %, the resistance of electricity is about 1.4 %, which is an electrical resistance similar to that of the $Pd_{77}Ag_{23}$ sensor. Despite using low cost $Ni_{64}Zr_{36}$ alloy as the main sensing element, performance similar to that of existing Pd sensors is obtained in a highly concentrated hydrogen atmosphere. By improving the sensitivity of the hydrogen detection through optimization including of the thickness of each layer and the composition of Ni-Zr alloy thin film, the proposed Ni-Zr-based hydrogen sensor can replace Pd-based hydrogen sensors.

Fabrication of $100{\mu}m$ High Metallic Structure Using Negative Thick Photoresist and Electroplating (Negative Thick Photoresist를 이용한 $100{\mu}m$ 높이의 금속 구조물의 제작에 관한 연구)

  • Chang, Hyun-Kee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2541-2543
    • /
    • 1998
  • This paper describes the fabrication process to fabricate metallic structure of high aspect ratio using LlGA-like process. SU-8 is used as an electroplating mold. SU-8 is an epoxy-based photoresist, designed for ultrathick PR structure with single layer coating [1,2]. We can get more than $100{\mu}m$ thick layer by single coating with conventional spin coater, and applying multiple coating can make thicker layers. In the experiments, we used different kinds of SU-8, having different viscosity. To optimize the conditions for mold fabrication process, experiments are performed varying spinning time and speed, soft-bake, develop and PEB (Post Expose Bake) condition. With the optimized condition, minimum line and space of $3{\mu}m$ pattern with a thickness of $40{\mu}m$ and $4{\mu}m$ pattern with a thickness of $130{\mu}m$ were obtained. Using the patterned PR as a plating mold, metallic structure was fabricated by electroplating. We have fabricated a electroplated nickel comb actuator using SU-8 as plating mold. The thickness of PR mold is $45{\mu}m$ and that of plated nickel is$40{\mu}m$. Minimum line of the mold is $5{\mu}m$. Patterned metallic layer or polymer layer, which has selectivity with the structural plated metallic layer, can be used as sacrificial layer for fabrication of free-standing structure.

  • PDF

$In_2O_3$ Thin Film Ozone Sensor Prepared by Sol-Gel Method (졸-겔법을 이용한 $In_2O_3$ 박막의 오존 센서)

  • Lee, Yun-Su;Song, Kap-Duk;Choi, Nak-Jin;Joo, Byung-Su;Kang, Bong-Hwi;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.101-107
    • /
    • 2001
  • A highly selective, sensitive and reliable ozone sensing $In_2O_3$ thin film was fabricated by a sol-gel method. The fabricated film is operated at a relatively lower temperature than ever developed thin films and saved operating power. $In_2O_3$ films deposited by sol-gel technique has been recently attracted because it is an economical and energy saving method and precisely controlled microstructure. Indium alkoxide precursor was synthesized from the reaction between indium hydroxide and butanol. PVA binder was used to improve adhesion of the films. The $In_2O_3$ thin films were obtained by spin coating from 1 to 5 times followed by drying at $100^{\circ}C$ and calcining at $600^{\circ}C$ for 1h. The film thickness was controlled by the number of coating time. The morphology and the thickness of the $In_2O_3$ films were examined by a SEM and XRD. The $In_2O_3$ thin films show a high sensitive to ozone gas at operating temperature of $250^{\circ}C$. The $In_2O_3$ sensor has very good selectivity to $CH_4$, CO, $C_4H_{10}$ and ethanol.

  • PDF