• Title/Summary/Keyword: spin magnetic moment

Search Result 96, Processing Time 0.023 seconds

Mossbauer Study for the Cation Distribution of Co-ferrite (CoxFe1-xO4) Thin Films (Co-ferrite 박막에서 양이온 거동에 관한 Mössbauer 분광 연구)

  • Park, Jae-Yun;Park, Young-Ran;Kim, Hee-Kyung;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • The crystallographic properties and cation distribution of oxyspinels ferrite $Co_xFe_{1-x}O_4$ thin films have been explored by X-ray diffraction, vibrating sample magnetometer (VSM), and conversion electron $M\"{o}ssbauer$ spectroscopy (CEMS). Thin films are prepared by sol-gel method. Normal spinel structure is transformed to inverse spinel structure with increasing Co concentration CEMS results indicate that most of $Fe^{3+}$ ions are substituted to $Co^{3+}$ions. Accordingly $Co^{2+}$ ions on octahedral site migrate to tetrahedral site. Magnetic moment is decreased with increasing Co concentration, which means high spin $Fe^{3+}$ ions are replaced by low spin $Co^{3+}$.

Electronic Structure and Magnetism of CrP/SrBi Interface: A First Principles Study

  • Bialek, Beata;Lee, Jae-Il
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.93-96
    • /
    • 2007
  • We investigated the electronic structure and magnetic properties of zinc-blende CrP/SrBi interface by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. It is found that the half-metallicity is destroyed when the two half-metals are in contact. Magnetic moments of the atoms forming the supercell differ considerably from the respective values obtained for the bulk structures of the two materials. Cr atoms being and not being in contact with Bi atoms have magnetic moment 3.43 and $2.69{\mu}_B$, respectively. Bi atoms lose their majority electrons which results in their negative polarization. Alkaline Sr atoms are very weakly negatively polarized. The spin distribution within the supercell is such that well separated regions of positive and negative polarization are seen, especially around the layer of P atoms being in contact with the layer of Sr atoms.

A First-principles Calculation of Surface Magnetism of Half-monolayer Ru on Pd(001)

  • Kim, Dong-Chul;Lee, J.I;Jang, Y.R
    • Journal of Magnetics
    • /
    • v.4 no.4
    • /
    • pp.107-110
    • /
    • 1999
  • In order to investigate the magnetism of Ru submonolayer on Pb(001), we have performed first-principles calculations for half-layer of Ru on Pd(001) using the full-potential linearzed augmented plane wave (FLAPW) method. We have found that the magnetic moment of Ru for 0.5 layer is 2.21 B. It is found that substrate Pd layers are polarized by the 0.5 Ru overlayer to have significant magnetic moments. Our results are compared with those obtained by the anomalous Hall effect. The calculated electronic structures, i,e., the spin densities and density of states are presented and discussed in relation with magnetic properties.

  • PDF

The Electronic and Magnetic Properties of Fe Overlayers on W(110) (W(110)위에 성장한 Fe 웃층의 전자 및 자기적 성질)

  • ;;A. J. Freeman
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 1991
  • The electronic and magnetic structure of Fe overlayers on W(110) is determined by means of the all-electron local spin density full potential linearized augmented plane wave (FLAPW) method with a single slab approach. Charge and spin densities, magnetic moments, contact hyperfine fields, and layer projected density of states (LDOS) are presented. For bilayer Fe coverage, we find magnetic moments to be 2.90 and 2.30 ${\mu}_B$ for the surface and subsurface Fe layers, respectively, corresponding to a 18% enhancement of the total magnetization compared with the calculated bulk value (2.22${\mu}_B$);For monolayer coverage the moment is 2.56 ${\mu}_B$ which is enhanced by 16% compared to bulk. Unusual changes in the magnetic hyperfine interaction are found in going from a monolayer to a bilayer coverage. Comparison of the results to the theoretical ones of the clean Fe(110) to discuss the hybridization and the negative pressure effects. We discuss our results by comparing them to experimental results.

  • PDF

Technology of Control Moment Gyroscope and its Industrial Trend (제어 모멘트 자이로의 기술과 산업동향)

  • Lee, Seon-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.86-92
    • /
    • 2012
  • The well-used actuators for the attitude control of spacecrafts are thruster, reaction wheel, control moment gyroscope, and magnetic torquer. Among them, the control moment gyroscope(CMG) which generates the torque based on the gyroscopic principle in physics, has an advantage of the high torque output compared to the low power consumption. This paper introduces an outline of CMG hardware technology, its application history in spacecrafts, and their associated hardware characteristics. Moreover, its spin-off cases to the other industrial fields such as ship, robotics, and MEMS including their research trend are provided.

Exchange Bias Coupling Depending on Uniaxial Deposition Field of Antiferromagnetic FeMn Layer

  • Lee, Sang-Suk;Hwang, Do-Guwn
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.17-20
    • /
    • 2010
  • The relationship between ferromagnet anisotropic magnetization and the antiferromagnet atomic spin configuration was investigated for various angles of the uniaxial deposition magnetic field of the FeMn layer in the Corning glass/Ta(5nm)/NiFe(7nm)/FeMn(25nm)/Ta(5nm) multilayer that was prepared by the ion beam sputter deposition. The exchange bias field ($H_{ex}$) obtained from the measurement of the easy-axis MR loop decreased to 40 Oe at the deposition field angle of $45^{\circ}$, and to 0 Oe at the angle of $90^{\circ}$. When the difference between the uniaxial axis between the ferromagnet NiFe and the antiferromagnet FeMn was $90^{\circ}$, the strong antiferromagnetic dipole moment of FeMn caused the weak ferromagnetic dipole moment of NiFe to rotate in the interface.

PMR in Organic Plastic Crystals (I). Pivalic Acid (유기플라스틱 결정체의 PMR 연구 (제 1 보). 피발산)

  • Stefan J. K. Choi;John D. Graham
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.149-155
    • /
    • 1975
  • Pivalic acid, which has a globular shape and is a plastic crystal, has been examined by means of temperature-dependent with-line proton magnetic resonance spectroscopy. Results of temperature-dependent line width, second moment, and spin-lattice relaxation time studies of pivalic acid were interpreted in terms of dynamic behavior and hydrogen bonding. The dynamic behavior consists of superimposed reorientation of the methyl groups about their three-fold axes$(C_3) and of the molecule about the central C-C bond(C_3'),$ general molecular reorientation about the center of gravity, and molecular self-diffusion. Activation energies for the motional processes have been obtained from line width measurements using the modified Bloembergen, Purcell, and Pound theory and from spin-lattice relaxation time measurements. The results were compared with the Pople-Karasz theory of fusion and the agreement was found to be poor. The discrepancy was interpreted in terms of hydrogen bonding in this molecule.

  • PDF

Electronic Structures and Magnetism of the MgCFe3(001) Surface

  • Jin, Ying-Jiu;Kim, I. G.;Lee, J. I.
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.132-137
    • /
    • 2002
  • The electronic structures and magnetism of the non-oxide perovskite MgCFe$_3$(001) surface were investigated by using the all-electron full-potential linearized augmented plane wave (FLAPW) method within the generalized gradient approximation (GGA). We considered both of the MgFe terminated (MgFe-Term) and the CFe terminated (CFe-Term) surfaces. We found that the minority spin d-bands of Fe(S) of the MgFe-Term are strongly localized and Fermi level (EF) lies just below the sharp peak of the minority spin d-band of Fe(S), while the minority spin d-bands of Fe(S) of the CFe-Term are not localized much and Fermi level (E$_F$) lies in the middle of two peaks of the minority spins. The majority Fe(S) d-band width of MgFe- Term is narrower than that of the CFe-Term. It is found that the magnetic moment of Fe(S) of the MgFe- Term is 2.51 ${\mu}$$_B$, which is much larger than that of 1.97 ${\mu}$$_B$ of the CFe-Term.

First-principles Calculations on Magnetism of 1H/1T Boundary in Monolayer MoS2 (제일원리계산에 의한 단층 MoS2의 1H/1T 경계 자성)

  • Jekal, Soyoung;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.71-75
    • /
    • 2016
  • Monolayer $MoS_2$ is energetically most stable when it has a 1H phase, but 1H to 1T phase transition ($1H{\rightarrow}1T$) is easily realized by various ways. Even though magnetic moment is not observed during $1H{\rightarrow}1T$, $0.049{\mu}_B/MoS_2$ is obtained in local 1T phase; 75% 2H and 25% 1T phases are mixed in ($2{\times}2$) supercell. Most magnetic moment is originated from the 1T phase Mo atom in the supercell, while the magnetic moments of other atoms are negligible. As a result, magnetic/non-magnetic boundary is created in the monolayered $MoS_2$. Our result suggests that $MoS_2$ can be applied for spintronics such as a spin transistor.

Magnetism during adsorption of oxygen in Pt segregated $Pt_3Ni$ (111): Density Functional Study

  • Kumar, Sharma Bharat;Kwon, O-Ryong;Odkhuu, Dorj;Hong, Soon-Cheol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.12a
    • /
    • pp.14-14
    • /
    • 2011
  • Limited understanding of the surface properties of $Pt_3Ni$ for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) has motivated the study of magnetic properties and electronic structures of Pt segregated $Pt_3Ni$ (111) surface during adsorption of oxygen molecule on it. The first principle method based on density functional theory (DFT) is carried out. Nonmagnetic Pt has induced magnetic moment due to strong hybridization between Ni 3d and Pt 5d. It is found that an oxygen molecule prefers bridge site with Pt rich subsurface environment for adsorption on the surface of Pt segregated $Pt_3Ni$ (111). It is seen that there is very small charge transfer from $O_2$ to Pt. The curve of energy versus magnetic moment of the oxygen explains the magnetic moments in transition states. We found the dissociation barrier of 1.07eV significantly higher than dissociation barrier 0.77eV on Pt (111) suggesting that the dissociation is more difficult on Pt segregated $Pt_3Ni$ (111) surface. The spin polarized densities of states are presented in order to understand electronic structures of Pt and $O_2$ during the adsorption in detail.

  • PDF