• Title/Summary/Keyword: spin fluctuation

Search Result 18, Processing Time 0.02 seconds

Zn and Ni Doping Effects on Antiferromagneticv Spin Fluctuation in YBa$_2Cu_3O_7$ (Zn와 Ni의 치환이 YBa$_2Cu_3O_7$의 반강자성적 스핀요동에 주는 효과)

  • Han, Ki-Seong;Mean, Byeong-Jin;Lee, Kyu-Hong;Seo, Seung-Won;Kim, Do-Hyeong;Lee, Moo-Hee;Lee, Won-Chun;Cho, Jeong-Suk
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.247-250
    • /
    • 1999
  • We have performed $^{63,65}$Cu nuclear quadrupole resonance (NQR) measurements on Zn and Ni doped YBa$_2Cu_3O_7$ (YBa$_2Cu_{3-x}M_xO_7$, M=Zn or Ni, x = 0.00 ${\sim}$ 0.09). Doping effects are markedly different in relaxation rates as well as in superconducting transition temperatures. Both the spin-lattice and the spin-spin relaxation rates decrease for Zn doped YBCO. However, those increase for Ni doped YBCO. This contrast in local electronic dynamics provides a clear microscopic evidence that Zn forms no local moment, while Ni develops a local moment. Consequently, the antiferromagnetic spin fluctuation is suppressed by Zn doping whereas it is preserved by Ni doping.

  • PDF

A Study on Spin-Lattice Relaxation of Methyl Protons in 2,6-Dichlorotoluene and N-Methyl Phthalimide

  • Lee, Jo-Woong;Lim, Man-Ho;Rho, Jung-Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.47-51
    • /
    • 1991
  • Spin-lattice relaxation of methyl protons in 2,6-dichlorotoluene and N-methyl phthalimide, each dissolved in CDCl$_3$, has been studied at 34$^{\circ}$C and the contribution from spin-rotation interaction to the relaxation process has been separated from that due to dipole-dipole interactions among methyl protons. The results show that the spin-rotational contributions to the initial rate of relaxation in 2,6-dichlorotoluene and N-methyl phthalimide amount to 18 and 31%, respectively, of the total relaxation rate at 34$^{\circ}$C. The method of separating the spin-rotational contribution from that of dipolar interactions adopted in this paper is based on the well known fact that in an A$_3$ spin system such as methyl protons in liquid phase dipolar relaxation mechanism gives non-exponential decay of the z-component of total magnetization of protons while the random field fluctuation such as spin-rotational mechanism causes exponential decay.

[ $^{11}B$ ] Nuclear Magnetic Resonance Study of Spin Structures in Terbium Tetraboride

  • Mean, B.J.;Kang, K.H.;Kim, J.H.;Hyun, I.N.;Lee, Moo-Hee;Cho, B.K.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.2
    • /
    • pp.197-202
    • /
    • 2006
  • [ $^{11}B$ ] nuclear magnetic resonance (NMR) measurements were performed on the single crystals of $TbB_4$ to investigate local electronic structure and 4f spin dynamics. $^{11}B$ NMR spectrum, Knight shift, spin-lattice and spin-spin relaxation rates were measured down to 4K at 8T. $^{11}B$ NMR shift and linewidth are huge and strongly temperature dependent due to the 4f moments. In addition, both are proportional to magnetic susceptibility, indicating that the hyperfine field at the boron site originates from the 4f spins of Tb. Below $T_N$, the single broad resonance peak of $^{11}B$ NMR splits into several peaks reflecting the local magnetic fields due to antiferromagnetic spin arrangements. The longitudinal and the transverse relaxation rates, $1/T_1\;and\;1/T_2$, independent of temperature above $T_N$, decreases tremendously confirming huge suppression of spin fluctuation below $T_N$.

  • PDF

Dynamic Spin Switching of Magnetic Films and Tunnel Junctions

  • Miyazaki, T.;Ando, Y.;Kubota, H.;Mizukami, Y.;Nakamura, H.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.272-273
    • /
    • 2003
  • Spin dynamics has been investigated intensively in various kinds of fields. Most popular one is an initial permeability at high frequency. Also, magnetic after-effect such as thermal fluctuation of fine magnetic particles and disaccommodation in soft magnetic materials were extensively studied in the past. When we apply an external farce with the same frequency as that of the system being examined, the system absorbs the external energy and the precession enhances. It is called resonance in general. Among the various resonances, ferromagnetic resonance (FMR) has been used as a good tool to evaluate material constants such as saturation manetization or spin damping parameter by analyzing a resonance curve. In this talk first instinctive understanding of Gilbert spin damping and spin pumping will be explained. Then, experimental data for enhancement of Gilbert damping parameter (G) evaluated from FMR spectrum and spin precession measured by a time resolved pump-probe method for Permalloy thin film will be introduced. Finally, magnetization reversal observed by air-coplanar probe will be given.

  • PDF

An Investigation of the Coherent Structures in Turbulent Wake Past a Stationary and Rotating Cylinder (정지 및 회전하는 원주에 의한 난류후류의 응집구조)

  • 부정숙;이종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1310-1321
    • /
    • 1994
  • Turbulent coherent structures in the intermediate wake of a stationary and rotating cylinder, spin rate S=0.7, situated in a uniform were experimentally investigated using a conditionalphase average technique. Measurements were carried out at a section of 8.5 diameters downstream form the center of cylinder and a Reynolds number of $Re=6.5{\times}10^{3}.$/TEX> The phase averaged velocity and velocity vector fields, contours of vorticity, turbulent intermittency function and velocity fluctuation energy are presented and discussed in relation to the large scale coherent structures by Karman vortices that shed periodically from the cylinder. Coherent wake structures of the rotating cylinder is almost identical with stationary cylinder, but the lateral displacement and shrinkage of turbulent wake region is occured by rotation. Rotation of the cylinder result in that the deflection of wake center to deceleration region(Y/D${\simeq}-0.3)$ and the decrease of mean velocity defect(10%), vorticity strength of large scale structures(19%), total velocity fluctuation energy(12%).

An NMR Study on Molecular Motions of $\alpha$,2,6-Trichlorotoluene in Solution State

  • Ahn, Sang-Doo;Lee, Jo-Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.553-559
    • /
    • 1994
  • Dynamics of $CH_2CI$ group in ${\alpha},2,6$-trichlorotoluene dissolved in $CDCl_3$ was studied by observing various relaxation modes for $^{13}C$ under proton undecoupled condition. Partially relaxed $^{13}C$ spectra were obtained at $34^{\circ}C$ as a function of evolution time after applying various designed pulse sequences to this $AX_2$ spin system. It was found that nonlinear regression analysis of the relaxation data for these magnetization modes could provide the information about dipolar and spin-rotational auto-correlation and cross-correlation spectral densities for fluctuation of the $^{13}C-^1H$ internuclear vector in $CH_2Cl$ group. The results show that the effect of cross-correlation is comparable in magnitude to that of auto-correlation and the relaxation in this spin system is dominated by dipolar mechanism rather than spin-rotational one. From the resulting spectral density data we could calculate the bond angle ${\angle}HCH\;(105.1$^{\circ}$) and elements of the rotational diffusion tensor for $CH_2Cl$ group.

Effects of the Power Transmission Units on the Rotational Accuracy of A Hydrostatic Spindle (동력전달요소에 따른 유정압 주축의 회전정밀도에 관한 연구)

  • Park, C.H.;Ryu, G.W.;Jung, Y.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-68
    • /
    • 1995
  • In this study, the effects of the power transmission units on the rotational accuracy are investigated experimentally in a hydrostatic spindle. The effects of warm up time, unbalancing and the position of measuring sensor are pre-examined for the determination of measuring conditions. The misalignment of the power transmission units and the vibration excited by the fluctuation of belt are considered as the dominant parameters of error motion. The variation and scatter of run out at the range of 0 to 3,000rpm in rotational speed are appropriated for the camparison of availabilities of the transmission units to precision spin- dles.

  • PDF

Revival of Phonons in High Tc Superconductors

  • Bang, Yun-Kyu
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.127-135
    • /
    • 2008
  • We study the effects of phonon interaction on the superconducting pairing in the high $T_c$ superconductors (HTSC). Using coupled BCS gap equations, we found that phonon interaction can induce a s-wave component to the d-wave gap, mediated by Antiferromagnetic (AFM) spin fluctuations, in the (D+iS) form. However, $T_c$ is not enhanced compared to the pure d-wave pairing without phonon interaction. On the other hand, anisotropic phonon interaction can dramatically enhance the d-wave pairing and $T_c$ itself, together with the AFM spin fluctuation interaction. This ($D_{AFM}+D_{ph}$) type pairing exhibits strongly reduced isotope coefficient despite the large enhancement of $T_c$ by phonon interaction.

  • PDF

The Substitution Effect of Boron on Reentrant Behavior of Rapidly Solidified FeMnZr Alloys

  • Moon, Y.M;Kim, K.S;Yu, S.C;Srinivas, V
    • Journal of Magnetics
    • /
    • v.9 no.4
    • /
    • pp.113-115
    • /
    • 2004
  • The magnetization properties have been measured for amorphous $Fe_{82}Mn_{8-x}B_xZr_{10}$ (x = 0-8) alloys. The temperature dependence of magnetization for these alloys shows the existence of antiferromagnetic couplings between Fe atoms in low fields at low temperatures. The magnetic parameters, obtained from the magnetization behavior are consistent with the presence of mixed magnetic state. The Curie temperature and magnetic moment increased with an increase of the concentration of B and spin glass like transition observed at low temperature decreases and finally vanishes at x = 8 at %. Our result suggests that the substitution of B for Mn seems to cause an increase of magnetic order.