• Title/Summary/Keyword: spikelet components

Search Result 37, Processing Time 0.029 seconds

Evaluation of the relationship between growing temperature and grain yield components across years in two japonica rice varieties in Korea

  • Kang, Shingu;Cho, Hyeoun-Suk;Yang, Chang-Ihn;Kim, Jeong-Ju;Kim, Sookjin;Choi, Jongseo;Park, Jeong-hwa;Yang, Woonho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.354-354
    • /
    • 2017
  • Rice grain yield is determined by crop dry matter production that is sensitive to temperature. Our objective was to determine whether the difference in temperature between years had an impact on the relationship between yield components and grain yield. Field experiments were conducted under machine transplanting cultivation by using yield data of two japonica rice varieties, Odaebyeo (early maturing) and Nampyeong (mid-late maturing), in 2013 to 2016 in Suwon, Korea. Plant height, dry weight, and yield components were examined by analysis of variance, correlation. The milled rice yield of the two varieties were the highest in 2016, however the lowest yields were observed in the different years. In 2016, Odaebyeo produced $0.96t\;ha^{-1}$ greater milled rice yield than in 2015, and Nampyeong produced $1.11t\;ha^{-1}$ greater yield than in 2013. The correlation analysis indicated that spikelet per panicle (R = 0.53) was associated with grain yield of Odaebyeo. In Nampyeong, biomass at heading date (R = 0.74), 1000-grain weight (R = 0.71), spikelet per panicle (R = 0.58), and panicle number per $m^2$ were associated with grain yield. Sink size (spikelet number per $m^2$) of the two varieties responded to accumulative temperature from transplanting to panicle initiation stage. In this experiment, optimal accumulative temperature before panicle initiation has effect on increased spikelet number and/or number of panicle that were mainly responsible for yield difference. Rice production research to increase grain yield should consider all yield components, but increased emphasis on biomass production before heading is also necessary as well as grain ripening conditions.

  • PDF

Relationship of Spikelet Number with Nitrogen Content, Biomass, and Nonstructural Carbohydrate Accumulation During Reproductive Stage of Rice (벼의 영화수와 생식 생장기 경엽중, 질소함량 및 비구조 탄수화물함량과의 관계)

  • 이변우;박동하;최일선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.486-491
    • /
    • 2002
  • Spikelet number and its components of rice plant are closely associated with nitrogen accumulation and biomass production during panicle formation stage. To elucidate this relationship and also compare the differences of the sink formation efficiency among cultivars, spikelet number, its components, nitrogen content, nonstructural carbohydrate content, and plant dry matter were investigated under 5 nitrogen levels with two split application methods and shading treatments by using three rice varieties. The nitrogen amount in shoot at panicle initiation stage and at 15 days after panicle initiation showed significant positive correlation with primary rachis branches per square meter, and that at 15 days after panicle initiation and at heading stage with secondary rachis branches per square meter, Primary and secondary rachis branches per square meter showed positive significant correlation with the shoot dry weight at panicle initiation stage and at 15 days after panicle initiation stage, respectively, The amount of degenerated secondary rachis branches and spikelets per square meter showed significant negative correlation with the dry weight and nonstructural carbohydrate increase of stem during 15days after panicle initiation, and the contents of nonstructural carbohydrate at 15 days after panicle initiation. Spikelets per unit area showed significant positive correlation with nitrogen amount in shoot and shoot dry weight at heading stage. The sink formation efficiency expressed as the spikelet number produced by the unit amount of nitrogen in shoot at heading stage was higher in Nampoongbyeo than Choocheongbyeo and Hwaseongbyeo. Sink formation efficiency was negatively correlated with the dry weight increase of shoot and stem during reproductive stage. but not significantly with that of leaf in all varieties. Sink formation efficiency was not significantly correlated with nonstructural carbohydrate, but was significantly negatively correlated with structural carbohydrate increase during reproductive stage.

Effects of Shading at Heading Stage on Yield Components in Rice (출수기 차광이 벼 수량 관련형질에 미치는 영향)

  • 김기식;김승경;허범량;윤경민
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.2
    • /
    • pp.127-133
    • /
    • 1991
  • Experiments were conducted to investigate the effect of light shading around the heading stage on grain yield and its components of rice. Early, medium, and late-maturing varieties were trected with the light shading of 50% and 75% from the reduction division stage to 20 days after heading date. Heading date were delayed 2-3 days, whereas the mid -late varieties, Sangpung- byeo, and Bongkwang- byeo were no significantly affected. Culm length was increased and panicle exsersion was reduced as the shading treatments become higher, and the degree of the shading effect was more intensive at 75% of shading. The rate of spikllet degeneration was higher at the secondary rachis branches than the primary rachis branch. The early maturing varieties showed the higher rate of spikelet degeneration. Spikelet number was reduced 12-15, spikelet sterility was increased and ripening rate was declined by the shading treatments. Grain yield was decreased by 30-40% at the shading treatment of 50%, and 50% at the shade treatment of 75%.

  • PDF

Effect of Nitrogen Split Application Methods on Development of Vascular Bundle and Yield Components of Rice Cultivars

  • Lee, Dong-Jin;Chae, Je-Cheon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.4
    • /
    • pp.237-240
    • /
    • 2000
  • This experiment was conducted to evaluate the effect of split application of nitrogen(N) on development of vascular bundle(VB) and yield components of rice. Two cultivars were used in this study; IR58, an indica type and Shinunbongbyeim a japonica type. The number and total cross sectional area of the VB in the peduncle and leaf blade were more and bigger in N split application than 100 percent basal fertilizer. Nitrogen split application at necknode differentiation stage increased the number and size of the VB. Nitrogen split application resulted in increased panicle number with application of N before transplanting and at tillering stage; increased spikelets number with N application at necknode differentiation stage; and increased spikelet fertility and 1000 grain weight with N application at necknode differentiation and heading stages. Grain yield increased 7-10% in N split as compared to all basal application. The total cross sectional area of VB in peduncle closely correlated with the number of spikelets per panicle. Nitrogen management can have an impact on spikelet differentiation through more and bigger VB and increase grain yield potential.

  • PDF

Quantifying rice spikelet sterility on Vietnamese cultivars (Oryza sativa L.) under high temperature and shading condition

  • Tran, Loc Thuy;Shaitoh, Kuniyuki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.43-43
    • /
    • 2017
  • During grain filling period, rice is affected by many environmental factors; including temperature, water, radiation and soil nutrition condition. In future climate, greater shading and heat tolerance will be required in rice. In this study, the effect of shading and high temperature on spikelet sterility was conducted on fourteen Vietnamese cultivars. Field experiments were studied in 2015 and 2016 to evaluate the response of Vietnamese cultivars under high temperature during grain filling stage. The high temperature and shading were applied by closing two sides of growth chamber and covered by a black cloth (50% reduced solar radiation) under the field condition after the first cultivar heading. The sterility increased significantly under high temperature and shading. The highest percentage sterile spiketlets was observed in 'Jasmine 85' (71.7%) under shading and in 'OM4900' (53.4%) under high temperature in 2015 and 2016, respectively. Among the treatments, the percentage of sterile spekelets in Vietnamese cultivars under shading was highest which was 54.9% and 41.8% in 2015 and 2016, respectively. Yield components reduced significantly in both of shading and high temperature. Corresponding with significantly decrease in yield components, the yield in high temperature and shading decreased strongly in both 2015 and 2016.

  • PDF

Salt tolerant rice cv Nona Bokra chromosome segments introgressed into cv Koshihikari improved its yield under salinity through retained grain filling

  • Mitsuya, Shiro;Murakami, Norifumi;Sato, Tadashi;Kano-Nakata, Mana;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.238-238
    • /
    • 2017
  • Salt stress is one of the deteriorating abiotic stresses due to the climate change, which causes over-accumulation of $Na^+$ and $Cl^-$ ions in plants and inhibits the growth and yield of rice especially in coastal Southeastern Asia. The yield components of rice plant (panicle number, spikelet number per panicle, 1000-grain weight, % of ripened grains) that are majorly affected by salt stress vary with growth stages at which the plant is subjected to the stress. In addition, the salt sensitivity of each yield component differs among rice varieties even when the salt-affected growth stage was same, which indicates that the physiological mechanism to maintain each yield component is different from each other. Therefore, we hypothesized that rice plant has different genes/QTLs that contribute to the maintenance of each yield component. Using a Japanese leading rice cultivar, Koshihikari, and salt-tolerant Nona bokra's chromosome segment substitution lines (CSSLs) with the genetic background of Koshihikari (44 lines in total) (Takai et al. 2007), we screened higher yielding CSSLs under salinity in comparison to Koshihikari and identified the yield components that were improved by the introgression of chromosome segment(s) of Nona bokra. The experiment was conducted in a salinized paddy field. One-month-old seedlings were transplanted into a paddy field without salinity. These were allowed to establish for one month, and then the field was salinized by introducing saline water to maintain the surface water at 0.4% salinity until harvest. The experiments were done twice in 2015 and 2016. Although all the CSSLs and Koshihikari decreased their yield under salinity, some CSSLs showed relatively higher yield compared with Koshihikari. In Koshihikari, all the yield components except panicle number were decreased by salinity and % of ripened grains was mostly reduced, followed by spikelet number per panicle and 1000-grain weight. When compared with Koshihikari, keeping a higher % of ripened grains under salinity attributed to the significantly greater yield in one CSSL. This indicated that the % of ripened grains is the most sensitive to salt stress among the yield components of Koshihikari and that the Nona bokra chromosome segments that maintained it contributed to increased yield under salt stress. In addition, growth analyses showed that maintaining relative growth rate in the late grain filling stage led to the increased yield under salt stress but not in earlier stages.

  • PDF

Establishment of Economic Threshold Caused by Rice Sheath Blight Disease severity (벼 잎집무늬마름병의 발생정도에 따른 경제적 방제수준 설정)

  • Shim, Hongsik;Choi, Hyo Won;Yeh, Wan-Hae;Lee, Yong-Hwan
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.4
    • /
    • pp.394-398
    • /
    • 2015
  • This research was performed to establish economic threshold (ET) for rice sheath blight disease with the cultivar Odeabyeo. Total yield and yield components, such as the panicle number per hill, the spikelet per panicle, the percent ripened grain and the thousand grain weight were evaluated depending on the disease severity of sheath blight on rice, respectively. Significant negative correlation between the percent of diseased hill (PDH) and total yield was observed (r = -0.93). Moreover, negative correlation coefficients were found between PDH and spikelet per panicle, and percent ripened grain (r = -0.66 and -0.77, respectively). There were no correlations between PDH and the panical number per hill, and a thousand grain weight, respectively. In this study, economic threshold level on sheath blight disease on rice was established on 7.8% of PDH.

Multivariate Analysis of Agronomic Characteristics of Wheat (Triticum spp.) Germplasm

  • Pilmo Sung;Mesfin Haile Kebede;Seung-Bum Lee;Eunae Yoo;Gyu-Taek Cho;Nayoung Ro
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.303-303
    • /
    • 2022
  • The purpose of this study was to evaluate agronomic characteristics and identify the useful traits to utilize the wheat genetic resources for breeding programs by understanding the phenotypic variation among germplasm through multivariate analysis. In this study, a total of 394 wheat accessions were characterized for 15 agronomic traits using the National Agrobiodiversity Center (NAC) descriptor list, of which 31 accessions from 6 species and 363 unidentified accession (Triticum spp.) available at the NAC, Rural Development Administration (RDA), Korea. Growth characteristics such as leaf width, culm length, spike length, spikelet length, solid stemmed, days to heading, days to maturity, grain-filing period, and also seed characteristics such as width, height, area, perimeter, circle, solidity, and germination percent were studied. Among the 15 agronomic characteristics, the germination percent showed the smallest variation between resources (CV = 0.4%), and the spikelet length (CV = 66.5%) showed the highest variation. A strong positive correlation was found between seed traits such as seed height and seed area (r = 0.90), seed height and seed perimeter (r = 0.87) and seed length and width (r = 0.80). Principal component analysis (PCA) was conducted and the first five principal components comprised 76.7% of the total variance. Among the first five PCs, PCI accounted for 28.5% and PC2 for 20.0%. Wheat resources (394) were classified into four clusters based on cluster analysis, consisting of 215 resources(I), 117 resources(II), 48 resources(III), and 14 resources(IV). Among the clusters, the resources belonging to Cluster III showed the lowest seed width, height, area, and perimeter characteristics compared to other clusters. The wheat resources belonging to cluster IV had small seed width and low germination percent, but took longer to form heads and mature than resources in other clusters. These results will serve as the basis for further genetic diversity studies, and important agronomic characteristics will be used for improving wheat, including developing high-yielding and resistant varieties to biotic and abiotic stresses via breeding programs.

  • PDF

Relationship between Panicle Production and Yielding Traits Influenced by Transplanting Density in Mid-Maturing Quality Rice 'Haiami' in the Mid-Plain Area of Korea (중부 평야지에서 고품질 중생종 벼 '하이아미'의 재식밀도에 따른 수수 변화와 수량의 관계)

  • Yang, Woonho;Kang, Shingu;Park, Jeong-Hwa;Kim, Sukjin;Choi, Jong-Seo;Yoon, Young-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.3
    • /
    • pp.193-202
    • /
    • 2017
  • This study was carried out in 2014 and 2015 to investigate the effect of transplanting density on panicle production and to analyze the relationship of panicle production with yield traits in the mid-maturing quality rice cultivar 'Haiami' in the mid-plain area of Korea. Number of tillers per square meter increased by reducing planting distance and increasing seedling number per hill. These effects were maintained until maturity and were reflected in the final number of panicles per square meter, although the effect of planting density decreased as rice growth progressed. However, increased panicle number per square meter following dense planting did not improve head rice yield. Panicle number per square meter was negatively associated with spikelet number per panicle and was not correlated with other yield components or head rice yield. Head rice yield was not correlated with head rice percentage but was closely and positively correlated with milled rice yield. Milled rice yield did not increase with grain filling percentage but increased with spikelet number per square meter. Spikelet number per square meter increased with both spikelet number per panicle and panicle number per square meter, although the former had a greater influence. Therefore, we conclude that head rice yield of the 'Haiami' cultivar grown in the mid-plain area of Korea is not improved with an increased panicle number following high planting density but it could be improved with high milled rice yield by increasing spikelet number per unit area.

Effect of High Temperature and Water Management on Agronomic Characters in Rice (고온 및 고온기 물관리방법이 수도생육에 미치는 영향)

  • 이승필;김상경;이광석;최대웅;이상철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.3
    • /
    • pp.195-200
    • /
    • 1990
  • These experiments were conducted to determine the effect of high temperature and water managements on growth and yield of rice. Shoot dry weight and percent of fresh roots were decreased when rice plant was exposed to high temperature, and also high temperature treatment decreased yield components of rice through spikelet number at meiotic, filled grain ratio and percent of fertility at heading, and 1,000 grain weight at ripening stage. Nitragen content of the rice varities was decreased by high temperature treatment regardless different growth stage, although Si content increased. Grain yield of rice varieties significantly decreased due to high temperature when rice plants were treated at heading stage followed by ripening stage. meiotic, young panicle initiation, maximum tillering and tillering stage in order. Effect of the continual submerging on temperature increased by 1.1$^{\circ}C$ at daytime and by 3.7$^{\circ}C$ at nighttime, but flowing water irrigation which can maintain optimum temperature reduced plant height and increased dry weight and percent of fresh roots. Flowing water irrigation showed higher yield by 4-8% compared to continual submerging method through increment of yield components such as spikelet number, filled grain ratio and 1,000-grain weight.

  • PDF