• Title/Summary/Keyword: spike discharge

Search Result 16, Processing Time 0.022 seconds

Electrochemical spike oscillation st the Ni electrode interface (Ni 전극 계면에서 전기화학적 spike 발진)

  • 천장호;손광철;라극환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.83-89
    • /
    • 1996
  • The electrochemical spike oscillations at the nickel (Ni) electrode/(0.05M KHC$_{8}$H$_{4}$O$_{4}$) buffer solution (pH 9) interface have been studied using voltammetric and chronoamperometric methods. The nature of the periodic cathodic current spikes is the activation controlled currents due to the hydrogen evolution reaction and depends onthe fractioanl surface coverage of the adsorbed hydrogen intermediate or the cathodic potential. There is two kinds of the waveforms corresponding to two kinds of the cathodic current spike oscillations. The widths, periods, and amplitudes of the cathodic current spikes are 4 ms or 5ms, 151 ms or 302 ms, and < 30 mA or < 275 mA, respectively. The fast discharge and recombination reaction steps are 1.5 times and twice and faster than the slow discharge and recombination reaction steps. The fast and slow discharge and recombination reaction steps are 1.5 times and twice faster than the slow discharge and recombination reaction steps. The fast and slow discharge and recombination reactions corresponding to the fast and slow adsorption sites at the Ni cathode.

  • PDF

Effects of Ouabain and Vanadate on the Spontaneous Contractions and Electrical Activity in Guinea-pig Taenia Coli (결장뉴 전기활동도에 대한 Ouabain과 Vanadate의 작용)

  • Park, Jong-Kyou;Kim, Ki-Whan;So, In-Suk
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.189-206
    • /
    • 1988
  • The effects of ouabain on the contractile and electrical activities were investigated in the isolated preparations of guinea-pig taenia coli, and compared with those of vanadate. Spontaneous contractions were recorded with force transducer, and electrical activites were measured by use of suction electrode, or single sucrose-gap technique. The contractions were induced by the electrical stimulation for 5 seconds every 1 minute with alternating current (60 Hz, 3.0 V/cm) through the platinum electrodes located in parallel with the long axis of the preparation. All experiments were performed in tris-buffered Tyrode solution which was aerated with $100%{\;}O_2$ and kept at $35^{\circ}C$. The results obtained were as follows: 1) Responses of spontaneous contractions to ouabain were concentration-dependent; $10^{-7}M$ ouabain caused a rise of basal tone. Above the concentration of $10^{-6}M$ ouabain, an initial increase followed by a decrease in tension was observed. 2) A continuous spike discharge was induced by the administration of $10^{-7}M$ ouabain. Above $10^{-6}M$ ouabain, a transient initial increase followed by a decrease in spike frequency and amplitude was produced, and finally membrane potential was sustained at a certain level without a spike discharge. 3) The characteristic response to $10^{-7}M$ ouabain was not blocked by the pretreatment with $10^{-7}M$ atropine. 4) The electrically induced contractions were completely suppressed at the concentration of $2{\times}10^{-7}M$ ouabain. These contractions were blocked more rapidly in paralled with the increase in ouabain concentration. 5) Effects of vanadate on the spontaneous activities were quite different from those of ouabain; $10^{-6}M$ vanadate increased the amplitude of contractions and $10^{-5}M$ vanadate increased slightly both amplitude and frequency of spontaneous contractions. $10^{-4}M$ vanadate showed irregular phasic contractions superimposed on the increased basal tone. 6) $10^{-5}M$ vanadate depolarized the membrane potential and shortened the interval between the bursts of spike discharge, whereas $10^{-4}M$ vanadate induced continuous spike discharge with membrane depolarization. 7) Vanadate caused a characteristic inhibitory response to the contractions induced by electrical stimulation; An initial rapid inhibition of tension development and then gradual recovery to a certain level. From the above results, the following conclusions could be made: 1) The rise of basal tone at $10^{-7}M$ ouabain is due to continuous spike discharge without a silent period. The continuous spike discharge is likely to be associated with a slight membrane depolarization caused by the blockage of Na pump. 2) The biphasic response induced by above $10^{-6}M$ ouabain seems to occur by the different mechanisms. The initial increase in tension is associated with depolarization along with an increase in spike frquency, whereas the subsequent relaxation occurs through a non-electrical mechanism. 3) The characteristic response to $10^{-7}M$ ouabain is resulted not from the action on intrinsic nerve terminal, but from its direct action on the membrane of smooth muscle cells. 4) The phasic contractions superimposed on the increased basal tone at the concentration of $10^{-4}M$ vanadate is resulted from the continuous spike discharge with membrane depolarization, of which mechanism remains unknown. 5) The inhibitory action of ouabain on the electrically induced contractions suggests that the increasein intracellular Na in some way inhibits the electrically induced $Ca^{2+}$ influx. The mechanism of vanadate action on the induced contractions remains unknown.

  • PDF

The Effect of Transformer Leakage Inductance on the Steady State Performance of Push-pull based Converter with Continuous Current

  • Chen, Qian;Zheng, Trillion Q.;Li, Yan;Shao, Tiancong
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.349-361
    • /
    • 2013
  • As a result of the advantages such as high efficiency, continuous current and high stability margin, push-pull converter with continuous current (PPCWCC) is competitive for battery discharge regulator (BDR) which plays an important role in power conditioning unit (PCU). Leakage inductance yields current spike in low-ripple current of PPCWCCs. The operating modes are added due to leakage inductance. Therefore the steady state performance is affected, which is embodied in the spike of low-ripple current. PPCWCCs which are suitable for BDR can be separated into three types by current spike characteristics. Three representative topologies IIs1, IIcb2 and Is3 are analyzed in order to investigate the factors on the magnitude and duration of spike. Equivalent current sampling method (ECSM) which eliminates the sampling time delay and achieves excellent dynamic performance is adopted to prevent the spike disturbance on current sampling. However, ECSM reduces the sampling accuracy and telemetry accuracy due to neglecting the spike. In this paper, ECSM used in PPCWCCs is summarized. The current sampling error is analyzed in quality and quantity, which provides the foundation for offsetting and enhancing the telemetry accuracy. Finally, current sampling error rate of three topologies is compared by experiment results, which verify the theoretical analysis.

Characteristic Intracelluar Response to Lidocaine And MK-801 of Hippocampal Neurons: An In Vivo Intracellular Neuron Recording Study

  • Choi, Byung-Ju;Cho, Jin-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.297-305
    • /
    • 1998
  • This study used in vivo intracellular recording in rat hippocampus to evaluate the effect of lidocaine and MK-801 on the membrane properties and the synaptic responses of individual neurons to electrical stimulation of the commissural pathway. Cells in control group typically fired in a tonic discharge mode with an average firing frequency of $2.4{\pm}0.9$ Hz. Neuron in MK-801 treated group (0.2 mg/kg, i.p.) had an average input resistance of $3.28{\pm}5.7\;M{\Omega}$ and a membrane time constant of $7.4{\pm}1.8$ ms. These neurons exhibited $2.4{\pm}0.2$ ms spike durations, which were similar to the average spike duration recorded in the neurons of the control group. Slightly less than half of these neurons were firing spontaneously with an average discharge rate of $2.4{\pm}1.1$ Hz. The average peak amplitude of the AHP following the spikes in these groups was $7.4{\pm}0.6$ mV with respect to the resting membrane potential. Cells in MK-801 and lidocaine treated group (5 mg/kg, i.c.v.) had an average input resistance of $3.45{\pm}6.0\;M{\Omega}$ and an average time constant of $8.0{\pm}1.4$ ms. The cells were firing spontaneously at an average discharge rate of $0.6{\pm}0.4$ Hz. Upon depolarization of the membrane by 0.8 nA for 400 ms, all of the tested cells exhibited accommodation of spike discharge. The most common synaptic response contained an EPSP followed by early-IPSP and late-IPSP. Analysis of the voltage dependence revealed that the early-IPSP and late-IPSP were putative $Cl^--and\;K^+-dependent$, respectively. Systemic injection of the NMDA receptor blocker, MK-801, did not block synaptic responses to the stimulation of the commissural pathway. No significant modifications of EPSP, early-IPSP, or late-IPSP components were detected in the MK-801 and/or lidocaine treated group. These results suggest that MK-801 and lidocaine manifest their CNS effects through firing pattern of hippocampal pyramidal cells and neural network pattern by changing the synaptic efficacy and cellular membrane properties.

  • PDF

Brain Mechanisms Generating REM Sleep (뇌의 REM 수면 발생기전)

  • Sohn, Jin-Wook
    • Sleep Medicine and Psychophysiology
    • /
    • v.2 no.2
    • /
    • pp.133-137
    • /
    • 1995
  • The author reviews current knowledge about what REM sleep is and where and how it is generated. REM sleep is the state in which our most vivid dreams occur. REM sleep is identified by the simultaneous presence of a desynchronized cortical EEG, an absence of activity in the antigravity muscles(atonia), and periodic bursts of rapid eye movements. Another characteristic phenomena of REM sleep are the highly synchronized hippocampal EEG of theta frequency and the ponto-geniculo-occipital(PGO) spike. All these phenomena can be explained in terms of changes in neuronal activity. Transection studies have determined that the pons is sufficient for generating REM sleep. Lesion studies have identified a small region in the lateral pontine tegmentum corresponding to lateral portions of the nucleus reticularis pontis oralis(RPO) and the region immediately ventral to the locus coeruleus, which is required for REM sleep. Unit recording studies have found a population of cells within this region that is selectively active in REM sleep. Cholinergic neurons of the giant cell field of pontine tegmentum(ETG), which is 'REM a sleep-on cells', has shown to be critically involved in the generation of REM sleep. Noradrenergic neurons of the locus coeruleus and serotonergic neurons of the dorsal raphe, which are called 'REM sleep-off cells', appear to act in a reciprocal manner to the cholinergic neurons. It is proposed that the periodic cessations of discharge of 'REM sleep-off cells' during REM sleep might be significant for the prevention of the desensitization of receptors of these neurons.

  • PDF

The Triple Current Source Inverter System for Induction Motor Drive Using a One Chip Microcomputer (One Chip Microcomputer를 이용한 유도전동기 구동용 3동 전류형 인버어터시스템)

  • Chung, Yon-Tack;Jang, Seong-Chil;Hwang, Lak-Hoon;Lee, Hoon-Goo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.162-172
    • /
    • 1991
  • In proportion to the capacity enlargement of the induction motor system controlled by current source inverter, the capacitance of the commutating capacitor is enlarged and then the spike value of output voltage is increased at the moment of charge and discharge. Moreover, the output currnet includes a number of harmonic components. Such voltage spike and harmonics generate the torque ripple and lead to bad effects on the performance of the induction motor. In this study, all the harmonics excluding 17th and 19th harmonics were mostly elimunated by adopting 18-phase Triple High Frequency Current Source Inverter(HFCSI), and the spike component of output voltage was reduced by adding the Voltage Clamping Circuit(VCC). As a result, the torque ripple and the commutation loss were reduced and the performance of the system was improved. Experiments for speed control were carried out in the tripple current source inverter system for induction motor drive. Overall system was controlled by ONE CHIP MICROCOMPUTER(INTEL 8751). Control circuits were simplified and good experimental results in the constant V/F control were obtained due to the flexibility of the microcomputer.

  • PDF

A NUMERICAL ANALYSIS ON ELECTROHYDRODYNAMICS (EHD) OF THE FLOW AND THE COLLECTION MECHANISMS INSIDE AN ELECTROSTATIC PRECIPITATOR WITH A SPIRAL SPIKE ELECTRODE (나선 스파이크 전기집진기 내 유동 및 집진 현상에 대한 전기수력학 수치해석 연구)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.58-65
    • /
    • 2008
  • In the present study, a numerical analysis on electrohydrodynamics (EHD) of the flow and the collection mechanisms inside a electrostatic precipitator with a spiral spike electrode were investigated. The phenomena of the electrostatic precipitator include complex interactions between the electric field, the fluid flow and the particle motion. To validate the numerical method, the numerical computation for the electric field of a simple wire-pipe type electrostatic system having an analytic solution were performed. Using this numerical method, the electric field of the spiked electrostatic precipitator was simulated. And the fluid flow and the particle motion inside the spiked electrostatic precipitator were numerically analyzed.

A study on the multi-inverter drive that is including the voltage clamping circuit (Voltage Clamping 회로를 첨가한 다중 인버어터의 구동에 관한 연구)

  • Jung, Yeon-Tack;Han, Kyung-Hee;Whang, Lak-Hoon;Kim, Ki-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.124-126
    • /
    • 1988
  • The induction motor is constantly operated by general source, thus its speed control is employed an inverter system which can convert DC into AC. The CSI(Current Source Inverter) which have a commutation capacitor in its circuit is liable to cause a voltage spike that it is due to charge and discharge of commutation capacitor. And six phases inverter makes a number of harmonics. These have a effect upon the induction motor badly. This paper aims to suggest a way to reduce such adverse effects by maximally cutting the voltage spike as well as by eliminating a number of harmonics through the operation of Multi-HFCSI.

  • PDF

A Basic Study on Developing an Electrocharged Scrubber (전기하전식 세정집진장치 개발에 관한 기초 연구)

  • 김종호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • This study has been performed to develop an efficient electrocharged scrubber. To improve collection efficiency of the scrubber, electric-charger was installed at the forefront of the packed crossflow scrubbers, and an experiment of changing discharge electrode shape and fluctuating electric field strength was undertaken. After using a light-oil boiler for generation of particles in the about 80% weight of submicron size particles was exhausted. Collection characteristics of the electrocharged scrubber were similar to those of two-stage electrostatic precipitator. In this study the collection efficiency of submicron size particles has been much improved, compared with the previous ones. In an experiment of changing discharge electrode and electric field strength, a needle-spike shape wire electrode showed a higher collection efficiency than round shape wire. The collection efficiency becomes increased with an increase of electric field strength.

  • PDF

Evidence for Excitatory Input to Ventral Spinocerebellar Tract Neurons Mediated by Motoneuron Collaterals

  • Kim, Jong-Hwan;Shim, Dae-Moo
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.117-124
    • /
    • 1996
  • This study evaluated the hypothesis that motoneuron collaterals modulate the excitability of ventral spinocerebellar tract neurons. In acute cats, 128 ventral cerebellar tract cells were studied extracellularly to determine the effects of ventral root stimuli. The majority of the cells responded to ventral root stimulation with either short or long latency increases in spike discharge. In many cells with sufficient spontaneous activity ventral root stimulation also evoked a long lasting reduction in activity. In preparations with the dorsal root ganglion removed VSCT neurons had similar response properties. In some cells contralateral ventral root stimulation also evoked excitatory responses. These findings indicate the VSCT can provide the cerebellum with information regarding activity in the final output neurons of the motor system, the alpha motoneurons.

  • PDF