• 제목/요약/키워드: spherical curve

Search Result 99, Processing Time 0.027 seconds

Optimization of In Vivo Stickiness Evaluation for Cosmetic Creams Using Texture Analyzer (Texture Analyzer (TA)를 이용한 화장품 크림의 In Vivo 끈적임 평가법의 최적화)

  • Ryoo, Joo-Yeon;Bae, Jung-Eun;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.371-382
    • /
    • 2020
  • There have been continuous attempts to quantify sensory attributes of cosmetic products by measuring relevant physical properties. The most representative method to evaluate stickiness is to measure axial force using texture analyzer. Stickiness is known to correlate with AUC which abbreviates area under curve in the obtained axial force curve as a function of time. Recently, Normandie University research group developed in vivo stickiness evaluation method considering the characteristics of skin along with established evaluation method[8]. Based on the study, we tried to optimize in vivo stickiness evaluation method especially for cosmetic creams. The experiment was carried out on 5 different facial creams products by changing the amount and the times of rolling of creams, and the shape and material of probes. Based on the results of the sensory evaluation, the most consistent conditions were established as the optimal evaluation method. As a result, applying 70 μL of cream and rubbing 10 times for 7 s inside the 3.4 cm circle were judged to be suitable. As for the probes, spherical metallic probe was more proper due to its reproducibility. We conducted the settled method on 10 subjects to check its validity. Although the absolute values of AUC differed depending on the individuals, the AUC values were all ranked the same. Finally, for the standardization of stickiness of AUC, polyvinylpyrrolidone (PVP) was set as a reference material and we measured AUC of its aqueous solution by changing concentration. Then, the degree of stickiness recognition for 5 different creams was surveyed to check the correlation between AUC and stickiness.

Analysis on the Depressing Force to the Cornea by Fitted Spherical Contact Lens (구면 콘택트렌즈의 피팅에 따른 각막 부착력 해석)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.1
    • /
    • pp.97-106
    • /
    • 2011
  • Purpose: This review article was written to theoretically compare the depressing force (pressure, adhesion) to the cornea between when the spherical lenses were being tightly and flat fitted. Methods: Mathematical equations and their numerical solution programs (model) were formulated to calculate the depressing (adhesion) force to the cornea by both the tightly and flat fitted contact lenses. Based on this proposed model the effects of parameters characterizing a contact lens such as BCs, diameters, edge shape and corneal shape (ratio of long and short corneal axis, p) on the depressing force to the cornea were predicted/analyzed in both tightly and flat fitting regimes. Results: Corneal adhesion increased as the corneal p-value increased. Adhesion increase caused by the increased p-value was much larger in flat fitted case than in tight fitted one. Corneal adhesion reduced abruptly as the BC increased in flat fitting regimes while the adhesion rise was insignificant in tight fitting ones. Reduction in corneal adhesion due to lens-size increase was predicted to be insignificant in both tight and flat fitting regimes. Both the lens edge shape (edge angle) and thickness were relevant only in tight fitting regime. Corneal adhesion increased as the increased with tight-fitted lenses. As the thickness of tight fitted lenses increased, corneal adhesion inversely decreased. Conclusions: The two most significantly affecting the depressing force to cornea were found to be the degree of corneal bending toward the periphery and the BCs of lenses.

Comparison between different cone-beam computed tomography devices in the detection of mechanically simulated peri-implant bone defects

  • Kim, Jun Ho;Abdala-Junior, Reinaldo;Munhoz, Luciana;Cortes, Arthur Rodriguez Gonzalez;Watanabe, Plauto Christopher Aranha;Costa, Claudio;Arita, Emiko Saito
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.133-139
    • /
    • 2020
  • Purpose: This study compared 2 cone-beam computed tomography (CBCT) systems in the detection of mechanically simulated peri-implant buccal bone defects in dry human mandibles. Materials and Methods: Twenty-four implants were placed in 7 dry human mandibles. Peri-implant bone defects were created in the buccal plates of 16 implants using spherical burs. All mandibles were scanned using 2 CBCT systems with their commonly used acquisition protocols: i-CAT Gendex CB-500 (Imaging Sciences, Hatfield, PA, USA; field of view [FOV], 8 cm×8 cm; voxel size, 0.125 mm; 120 kVp; 5 mA; 23 s) and Orthopantomograph OP300 (Intrumentarium, Tuusula, Finland; FOV, 6 cm×8 cm; voxel size, 0.085 mm; 90 kVp; 6.3 mA; 13 s). Two oral and maxillofacial radiologists assessed the CBCT images for the presence of a defect and measured the depth of the bone defects. Diagnostic performance was compared in terms of the area under the curve (AUC), accuracy, sensitivity, specificity, and intraclass correlation coefficient. Results: High intraobserver and interobserver agreement was found (P<0.05). The OP300 showed slightly better diagnostic performance and higher detection rates than the CB-500 (AUC, 0.56±0.03), with a mean accuracy of 75.0%, sensitivity of 81.2%, and specificity of 62.5%. Higher contrast was observed with the CB-500, whereas the OP300 formed more artifacts. Conclusion: Within the limitations of this study, the present results suggest that the choice of CBCT systems with their respective commonly used acquisition protocols does not significantly affect diagnostic performance in detecting and measuring buccal peri-implant bone loss.

Single crystal growth and structure analysis of superionic conductor ${\beta}-Ag_3SI$ (초이온도전체 ${\beta}-Ag_3SI$의 단결정 육성과 결정구조 해석)

  • Nam Woong Cho;Kwang Soo Yoo;Hyung Jin Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.63-70
    • /
    • 1994
  • Single crystals of the superionic conductor ${\beta}-Ag_3SI$ were prepared by thermal treatmentr from the reactant mixture of AgI and $Ag_2S$. The growing single crystals were made to spherical shape of $200{mu}m$ in diameter. The detailed structures analyses revealed that $Ag^+$ in ${\beta}-Ag_3SI$ distribute on 12h site of 4-coordination inpreference to 3c site of 6-coordination. The effective one-particle potential (o.p.p.). of $Ag^+$ along [110] direction was evaluated from the probability density function(p.d.f.) Activation energy calculated from the o.p.p. curve has been found to be 0.012 eV for the diffusion of $Ag^+$ on (001) plane in the ${\beta}-Ag_3SI$ structure.

  • PDF

Environment Simulation and Effect Estimation of Space Radiation for COMS Communication Payload (통신해양기상위성 통신 탑재체의 우주 방사선 환경 모사 및 영향 추정)

  • Kim, Seong-Jun;U, Hyeong-Je;Seon, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.76-83
    • /
    • 2006
  • Space radiation environment for COMS is simulated by NASA AP8/AE8, JPL91 and NRL CREME models, respectively for trapped particle, solar proton and cosmic-ray. The radiation effects on electronic devices in communication payload are also estimated by using simulation results. Dose-depth curve and LET spectrum are calculated for estimating total ionizing dose(TID) effect and single event effect(SEE) respectively. Spherical sector method is applied to dose estimation at each position in the units of communication payload to consider shielding effect of platform and housing. Total ionizing dose at each position varies by 8 times through shielding effect under the same external space radiation environment.

Newly Synthesized Silicon Quantum Dot-Polystyrene Nanocomposite Having Thermally Robust Positive Charge Trapping

  • Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.221-221
    • /
    • 2013
  • Striving to replace the well known silicon nanocrystals embedded in oxides with solution-processable charge-trapping materials has been debated because of large scale and cost effective demands. Herein, a silicon quantum dot-polystyrene nanocomposite (SiQD-PS NC) was synthesized by postfunctionalization of hydrogen-terminated silicon quantum dots (H-SiQDs) with styrene using a thermally induced surface-initiated polymerization approach. The NC contains two miscible components: PS and SiQD@PS, which respectively are polystyrene and polystyrene chains-capped SiQDs. Spin-coated films of the nanocomposite on various substrate were thermally annealed at different temperatures and subsequently used to construct metal-insulator-semiconductor (MIS) devices and thin film field effect transistors (TFTs) having a structure p-$S^{++}$/$SiO_2$/NC/pentacene/Au source-drain. C-V curves obtained from the MIS devices exhibit a well-defined counterclockwise hysteresis with negative fat band shifts, which was stable over a wide range of curing temperature ($50{\sim}250^{\circ}C$. The positive charge trapping capability of the NC originates from the spherical potential well structure of the SiQD@PS component while the strong chemical bonding between SiQDs and polystyrene chains accounts for the thermal stability of the charge trapping property. The transfer curve of the transistor was controllably shifted to the negative direction by chaining applied gate voltage. Thereby, this newly synthesized and solution processable SiQD-PS nanocomposite is applicable as charge trapping materials for TFT based memory devices.

  • PDF

Classification of Tumor cells in Phase-contrast Microscopy Image using Fourier Descriptor (위상차 현미경 영상 내 푸리에 묘사자를 이용한 암세포 형태별 분류)

  • Kang, Mi-Sun;Lee, Jeong-Eom;Kim, Hye-Ryun;Kim, Myoung-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.169-176
    • /
    • 2012
  • Tumor cell morphology is closely related to its migratory behaviors. An active tumor cell has a highly irregular shape, whereas a spherical cell is inactive. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use 3D time-lapse phase-contrast microscopy to analyze single cell morphology because it enables to observe long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring. Therefore, we first corrected for non-uniform illumination artifacts and then we use intensity distribution information to detect cell boundary. In phase contrast microscopy image, cell is normally appeared as dark region surrounded by bright halo ring. Due to halo artifact is minimal around the cell body and has non-symmetric diffusion pattern, we calculate cross sectional plane which intersects center of each cell and orthogonal to first principal axis. Then, we extract dark cell region by analyzing intensity profile curve considering local bright peak as halo area. Finally, we calculated the Fourier descriptor that morphological characteristics of cell to classify tumor cells into active and inactive groups. We validated classification accuracy by comparing our findings with manually obtained results.

The Development Study of A Manganese Sulphate Bath System ($MnSO_4$용액조 장치 개발 연구)

  • Hwang, Sun-Tae;Lee, Kyung-Ju;Choi, Kil-Oung;Kim, Won-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.70-76
    • /
    • 1986
  • In order to establish the national standards of neutron measurements, a manganese sulphate ($MnSO_4$) bath system was developed under the IAEA technical support. This bath system was made up of a spherical s.s. 316 L bath, of 3.5 mm thick and of 125 cm internal diagmeter, filled with a manganese sulphate solution, a solution circulating system, and a $^5Mn\;{\gamma}-ray$ monitoring system. The solution pumped from the bath was introduced into a Marinelli beaker-type monitor vessel which was equipped with two seperate detectors, $3.8cm{\phi}{\times}3.8cm$ NaI(T1) crystals. The performance of the system were tested using the neutron sources, $^{241}Am-Be\;and\;^{252}Cf$, mounted at the center of the bath. From the decay curve analysis of $^{56}Mn$ activity, neutron emission rate of $^{252}Cf$ by the comparative method was obtained to be $3.71{\times}10^7\;n/s\;per\;50{mu}g$ as of November 15, 1985.

  • PDF

Simulation of Tsunamis in the East Sea Using Dynamically-Interfaced Multi-Grid Model (동적결합둥지형 모형에 의한 동해안 쓰나미 시뮬레이션)

  • Choi, Byung-Ho;Efim, Pelinovsky;Woo, Seung-Buhm;Lee, Jong-Woong;Mun, Jong-Yoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.41-55
    • /
    • 2003
  • A dynamically-interfaced multi-grid finite difference model for simulation of tsunamis in the East Sea(Choi et al.) was established and further applied to produce detailed feature of coastal inundations along the whole eastern coast of Korea. The computational domain is composed of several sub-regions with different grid sizes connected in parallel of inclined directions with 16 innermost nested models. The innermost sub-region represents the coastal alignment reasonably well and has a grid size of about 30 meters. Numerical simulations have been performed in the framework of shallow-water equations(linear, as well as nonlinear) over the plane or spherical coordinate system, depending on the dimensions of the sub-region. Results of simulations show the general agreements with the observed data of run-up height for both tsunamis. The evolution of the distribution function of tsunami heights is studied numerically and it is shown that it tends to the log-normal curve for long distance from the source.

The Characteriastics of Viscosity Behavior of EMC for Semi-conductor Encapsulant - Containing One Kind of Spherical Silica (반도체 봉지재용 EMC의 점도거동 특성 - 한 종류의 구형 실리카 포함)

  • Kim, In Beom;Lee, Myung Cheon;Lee, Euy Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1175-1179
    • /
    • 1999
  • The rheological properties of highly filled epoxy molding compound(EMC) for semi-conductor encapsulants are greatly affected by the content of filler loaded. In this study, the change of viscosity of EMC for semi-conductor encapsulants with the filler content was investigated. Also, both of Cox-Merz and modified Cox-Merz equations were applied to convert the viscosity change as a function of frequency to that of shear rate. It was ovserved that shear thinning and yield stress occured at high filler contents and that the Cox-Merz equation could not be applied at high filler contents because of the difference of viscosity according to the various strains. When the modified Cox-Merz equation was applied, the all the curves having different strain tend to be represented by one master curve, even though some deviation was obseved at high filler content and strain.

  • PDF