• Title/Summary/Keyword: spherical contact

Search Result 168, Processing Time 0.028 seconds

Spherical Particles Formation in Lubricated Sliding Contact -Micro-explosion due to the Thermally-activated Wear Process-

  • Kwon, O.K.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The mechanism of various spherical particles formation from wide range of tribo-systerns is suggested and deduced by the action of micro-explosion on the basis of the thermally-activated wear theory, in which the flash temperature at contact could be reached clearly upto the material molten temperature due to the secondary activation energy from the exothermic reactions involving lubricant thermo-decomposition, metals oxidation, hydrogen reactions and other possible complex thermo-reactions at the contacts. Various shapes of spherical particles generated from the tribosystem can be explained by the toroidal action of micro-explosion accompanied with the complex thermo-chemical reactions at the contact surfaces or sub-surfaces.

Performance analysis of spherical indentation process during loading and unloading - a contact mechanics approach

  • Gandhi, V.C. Sathish;Kumaravelan, R.;Ramesh, S.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.469-483
    • /
    • 2014
  • In an indentation approach, the smooth rigid spherical ball penetrated into a deformable flat is considered for the study based on contact mechanics approach. The elastic-plastic frictionless spherical indentation analysis has been under taken in the finite element analysis using "ABAQUS" and experimental study. The spherical indentation has been studied for the materials like steel, aluminium, copper and brass with an identical spherical indenter for diverse indentation depths. The springback analysis is executed for studying the actual indentation depth after the indenter is unloaded. In the springback simulation, the material recovers its elastic deformation after the indenter is unloaded. The residual diameter and depth of an indentation for various materials are measured and compared with simulation results. It shows a good agreement between the simulation and an experimental studies.

Contrast Sensitivity and Glare with Spherical and Toric Soft Contact Lenses in Low-astigmatic Eyes (구면과 토릭 소프트 렌즈로 교정한 약도 난시안의 대비감도와 눈부심)

  • Lee, Min-Ah;Kim, Hyun Jung;Kim, Jai-Min
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • Purpose: The purpose of this study is to compare the visual performance by contrast sensitivity (CS) and disability glare (DG) in low astigmatic eyes corrected with toric soft lenses and other optical corrections. Methods: Twenty university students with myopia (-1.00 to -6.50D Sph. with astigmatism up to 1.50 cyl) were enrolled and corrected by five different methods: 1) soft toric lenses; 2) spherical soft contact lenses; 3) RGP lenses; 4) best spectacle corrected visual acuity; 5) spherical equivalent spectacles. All subjects had corrected vision acuity of 20/20 or better. Contrast sensitivity and disability glare were measured using the OPTEC 6500 contrast sensitivity view-in tester included the EyeView Functional Vision Analysis software at photopic or mesopic conditions with glare. Results: At photopic condition, best corrected spectacle wearers had the highest monocular contrast sensitivity at all spatial frequency followed by soft toric lenses, RGP lenses, spherical equivalent spectacles, and spherical soft contact lenses. However, all of them were in normal contrast sensitivity value at photopic condition. At mesopic condition with glare, toric soft lenses were the highest and followed by RGP lenses, spherical equivalent spectacles, best spectacle corrected visual acuity and spherical soft contact lenses. It was observed that spherical soft contact lens wearers demonstrated lower range than normal contrast sensitivity value at mesopic condition with glare. Conclusion: Toric soft lenses gave better visual performance than spherical soft lenses in low astigmatic eyes. Subjects requiring the use of contact lenses under mesophic conditions could benefit from toric soft lenses.

  • PDF

The Optimum Design Study of Asymmetric Layered Ceramic Component by Spherical Indentation (구형 인덴테이션 평가에 의한 비대칭적 층상형 세라믹 부품의 설계연구)

  • Lee, Kee-Sung;Kim, Tae-Woo;Kim, Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.297-301
    • /
    • 2004
  • The optimum design against contact crack initiation is investigated to find major parameters in designing desirable surface-coated asymmetric layered components. Hard ceramic coated soft materials with various elastic modulus mismatch are prepared for the analysis. Spherical indentation is conducted for producing contact cracks from the surface or interface between the coating and the substrate layer. A finite element analysis of the stress fields in the loaded layer components enables a direct correlation between the damage patterns and the stress distributions. Implications concerning the design of asymmetric layered components indicate that the coating thickness and the elastic modulus mismatch are important parameters for designing layered component to prevent the initiation of contact cracks.

  • PDF

Development of the Inner Spherical Traction Continuously Variable Transmission (내구면 접촉식 무단변속장치 개발)

  • Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.863-869
    • /
    • 2006
  • A new CVT, the inner spherical traction CVT (ISCVT) is introduced. Transmission of the most scooters is the self-controlled variable pulley-belt type of CVT having some disadvantages in the fuel consumption and the limitation of the transmittable power due to the slippage between the belt and pulley. Unlike this, ISCVT controlled directly by driver is more efficient and the contact mechanism having the same line of contact normal of the spherical rotors of different radii on common center causes that the power density and torque capacity are remarkably improved. The prototype with the specifications of 50cc scooter is designed and tested.

Kinematical Investigation and Geometry Modeling of the Perfect Involute Bevel Gearsets (완전한 인볼류트 베벨기어쌍의 기구학적 고찰 및 형상 모형화)

  • Park, N.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.46-56
    • /
    • 1995
  • As demands on the precision bevel gears are increased in the related industry, the exact kinematical investigations of a pair of spherical involute bevel gears are required for the computer aided design. The exact angular velocity ratio based on the characteristics of the spherical involute tooth is derived and verified from the relationship between rotational angles. Elementary kinematics of the gearsets is investigated by applying the transformation of the coordinate systems. The tooth contact lines based on logarithmic tooth-wise curve are examines in three dimentional space. Contact ratio is formulated and simulated according to the system parameters such as shaft angles, pressure angle, and spiral angles. The condition of teeth interference is dervied and the critical numbers of gear teeth are calculated. The whole surface geometry of a spiral bevel gearsets are discretized and visualized by a computer graphic tool.

  • PDF

The Effects of Spherical and Aspherical RGP Contact Lenses on Visual Performance (구면 및 비구면 RGP 콘텍트렌즈가 시력의 질에 미치는 영향)

  • Kim, Soo-Hyun;Kim, Hyun Jung;Kim, Jai-Min
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.31-38
    • /
    • 2009
  • Purpose: This study was to evaluate corneal topography, contrast sensitivity and ocular response of a RGP, back surface aspherical contact lens compared with a spherical contact lens. Methods: A total 37 subjects were fitted with a spherical lens in right eye and an aspherical in the left eye and were evaluated for changes in corneal topography and contrast sensitivity over a 2-month period. Results: Thirty-four of 37 subjects completed the 2-month study. The corneal topography did not show differences between spherical and aspherical RGP lenses. The eyes fitted with the aspherical lenses demonstrated a greater reduction in contrast sensitivity compared with their spherical counterparts under photopic condition. Subjects preferred comfort and ocular responses provided by the spherical lens. Conclusions: Corneal topography when comparing spherical and back surface aspherical RGP lenses did not show any significant difference in the subjects. Spherical RGP lens yields better contrast sensitivity and preference than aspherical RGP lens at photopic condition. Further investigation of aberrations induced by contact lens design is warranted to explain the observed differences in visual performance.

  • PDF

Sliding Contact Analysis between Rubber Seal, a Spherical Particle and Steel Surface (시일과 스틸면 사이에 구형 입자가 있는 미끄럼 접촉 해석)

  • Park, Tae-Jo;Lee, Jun-Hyuk
    • Tribology and Lubricants
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, a three elastic body sliding contact problem is modeled to investigate more precise wear mechanisms related with the sealing surface. A 3-D finite element contact model, a small spherical elastic particle, PTFE seal and steel surface, is solved using a nonlinear finite element code MARC. The deformed seal and steel surface shapes, von-Mises and principal stress distributions are obtained for different seal sliding distances. The entrapped small particle within PTFE seal results in very high stresses on the steel surface which exceeded its yield strength and produce plastic deformation such as groove and torus. The sealing surface could also be worn down by sub-surface fatigue due to intervening small particles together with the well-known abrasive wear. Therefore the proposed contact model adopted in this paper can be applied in design of various sealing systems, and further studies are required.

Atomistic simulation and investigation of nanoindentation, contact pressure and nanohardness

  • Chen, Chuin-Shan;Wang, Chien-Kai;Chang, Shu-Wei
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.411-422
    • /
    • 2008
  • Atomistic simulation of nanoindentation with spherical indenters was carried out to study dislocation structures, mean contact pressure, and nanohardness of Au and Al thin films. Slip vectors and atomic stresses were used to characterize the dislocation processes. Two different characteristics were found in the induced dislocation structures: wide-spread slip activities in Al, and confined and intact structures in Au. For both samples, the mean contact pressure varied significantly during the early stages of indentation but reached a steady value soon after the first apparent load drop. This indicates that the nanohardness of Al and Au is not affected by the indentation depth for spherical indenters, even at the atomistic scale.