• Title/Summary/Keyword: sphere type robot

Search Result 9, Processing Time 0.023 seconds

A Deformable Spherical Robot with Two Arms (두 팔을 가지는 변형 가능한 구형로봇)

  • Ahn, Sung-Su;Kim, Young-Min;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1060-1067
    • /
    • 2010
  • In this paper, we present a new type of spherical robot having two arms. This robot, called KisBot, mechanically consists of three parts, a wheel-shaped body and two rotating semi-spheres. In side of each semi-sphere, there exists an arm which is designed based on slider-crank mechanism for space efficiency. KisBot has hybrid types of driving mode: rolling and wheeling. In the rolling mode, the robot folds its arms through inside of itself and uses them as pendulum, then the robot works like a pendulum-driven robot. In the wheeling mode, two arms are extended from inside of the robot and are contacted to the ground, then the robot works like a one-wheel car. The Robot arms can be used as a brake during rolling mode and add friction to the robot for climbing a slope during wheeling mode. We developed a remote controlled type robot for experiment. It contains two DC motors which are located in the center of each semi-sphere for main propulsion, two RC motors for each arm operation, speed controllers for each semi-sphere, batteries for main power source, and other mechanical components. Experiments for the rolling and wheeling mode verify the hybrid driving ability and efficiency of the our proposed spherical robot.

Design of Omnidirectional Shock Absorption Mechanism and Stabilizing Dynamic Posture of Miniature Sphere Type Throwing Robot (구형 투척 로봇의 전방향 충격흡수 구조 설계 및 동적 자세 안정화)

  • Jung, Wonsuk;Kim, Young-Keun;Kim, Soohyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.4
    • /
    • pp.281-287
    • /
    • 2016
  • In this paper, we propose a novel compact surveillance throwing robot which has an omnidirectional shock absorption mechanism and an active control part of wheel treads to stabilize the dynamic posture of a miniature sphere type throwing robot. This throwing robot, which weighs 1.14kg and is 110mm in height, is designed in a spherical shape to be easily grabbed for throwing. Also, the omnidirectional shock absorbing aspect is designed using several leaf springs connected with inner and outer wheels. The wheel treads control part consists of a link mechanism. Through the field experiments, this robot is validated to withstand higher than 17Ns of omnidirectional impulse and increase the stabilized max speed three times from 11 rad/s to 33rad/s by increasing wheel treads.

Design of a Miniature Sphere Type Throwing Robot with an Axial Direction Shock Absorption Mechanism (축방향 충격흡수 향상을 위한 소형구형 투척 로봇구조 설계)

  • Jung, Wonsuk;Kim, Young-Keun;Kim, Soohyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.361-366
    • /
    • 2015
  • In this paper, we propose a novel surveillance throwing robot which is compact, light-weight and has an efficient shock absorption mechanism. The throwing robot is designed in a spherical shape to be easily grabbed by a hand for throwing. Also, a motor-wheel linking mechanism is designed to be robustly protected from shocks upon landing. The proposed robot has a weight of 2.2kg and the diameter of its wheels is 150 mm. Through the field experiments, the designed robot is validated to withstand higher than 13Ns of impulse.

Design of a Humanoid Robot Hand by Mimicking Human Hand's Motion and Appearance (인간손의 동작과 모양을 모방한 휴머노이드 로봇손 설계)

  • Ahn, Sang-Ik;Oh, Yong-Hwan;Kwon, Sang-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • A specialized anthropomorphic robot hand which can be attached to the biped humanoid robot MAHRU-R in KIST, has been developed. This built-in type hand consists of three fingers and a thumb with total four DOF(Degrees of Freedom) where the finger mechanism is well designed for grasping typical objects stably in human's daily activities such as sphere and cylinder shaped objects. The restriction of possible motions and the limitation of grasping objects arising from the reduction of DOF can be overcome by reflecting a typical human finger's motion profile to the design procedure. As a result, the developed hand can imitate not only human hand's shape but also its motion in a compact and efficient manner. Also this novel robot hand can perform various human hand gestures naturally and grasp normal objects with both power and precision grasping capability.

KisBot II : New Spherical Robot with Curved Two-pendulum Driving Mechanism (두 개의 곡선형 펜들럼 주행 메커니즘을 갖는 구형로봇)

  • Yoon, Joong-Cheol;Ahn, Sung-Su;Lee, Yun-Jung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.323-333
    • /
    • 2011
  • Due to the limited pendulum motion range, the conventional one-pendulum driven spherical robot has limited driving capability. Especially it can not drive parallel direction with center horizontal axis to which pendulum is attached from stationary state. To overcome the limited driving capability of one-pendulum driven spherical robot, we introduce a spherical robot, called KisBot II, with a new type of curved two-pendulum driving mechanism. A cross-shape frame of the robot is located horizontally in the center of the robot. The main axis of the frame is connected to the outer shell, and each curved pendulum is connected to the end of the other axis of the frame respectively. The main axis and pendulums can rotate 360 degrees inside the sphere orthogonally without interfering with each other, also the two pendulums can rotate identically or independent of each other. Due to this driving mechanism, KisBot II has various motion generation abilities, including a fast steering, turning capability in place and during travelling, and four directions including forward, backward, left, and right from stationary status. Experiments for several motions verify the driving efficiency of the proposed spherical robot.

Development of Diaphragm-type Stylus Probe for Ultra-precision On-machine Measurement Application (초정밀 기상측정용 다이아프램 타입 접촉식 프로브의 개발)

  • Lee, Jung-Hoon;Lee, Chan-Hee;Choi, Joon-Myeong;Kim, Ho-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.845-852
    • /
    • 2012
  • The diaphragm-type stylus probe was developed for ultra-precision on-machine measurement (OMM) application. This probe is equipped with two diaphragms which are parallel and one capacitive sensor is used for detecting the vertical motion of end tip in the stylus when it is contacted to the optical freeform surface. For better performance of proposed probes, several design parameters such as axial stiffness and the lateral deformations were investigated with finite element analysis techniques. To verify the feasibility, the profiles of the master sphere ball were measured on the ultra-precision milling machine. The measurement results show that the proposed probe can calculate the radius of the circle within the accuracy of 0.1 ${\mu}m$ for the ultraprecision optical surface.

Collision Avoidance Method Using Minimum Distance Functions for Multi-Robot System (최소거리함수를 이용한 다중 로보트 시스템에서의 충돌회피 방법)

  • Chang, C.;Chung, M.J.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.425-429
    • /
    • 1987
  • This paper describes a collision avoidance method for planning safe trajectories for multi-robot system in common work space. Usually objects have been approximated to convex polyhedra in most previous researches, but in case using such the approximation method it is difficult to represent objects analytically in terms of functions and also to describe tile relationship between the objects. In this paper, in order to solve such problems a modeling method which approximates objects to cylinder ended by hemispheres and or sphere is used and the maximum distance functions is defined which call be calculated simply. Using an objective function with inequality constraints which are related to minimum distance functions, work range and maximum allowable angular velocities of the robots, tile collision avoidance for two robots is formulated to a constrained function optimization problem. With a view to solve tile problem a penalty function having simple form is defined and used. A simple numerical example involving two PUMA-type robots is described.

  • PDF

Development of a Nuclear Steam Generator Tube Inspection/maintenance Robot

  • Shin, Ho-Cheol;Kim, Seung-Ho;Seo, Yong-Chil;Jung, Kyung-Min;Jung, Seung-Ho;Choi, Chang-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2508-2513
    • /
    • 2003
  • This paper presents a nuclear steam generator tube inspection/maintenance robot system. The robot assists in automatic non-destructive testing and the repair of nuclear steam generator tubes welded into a thick tube sheet that caps a hemispherical or quarter-sphere plenum which is a high-radiation area. For easy carriage and installation, the robot system consists of three separable parts: a manipulator, a water-chamber entering and leaving device for the manipulator and a manipulator base pose adjusting device. A software program to control and manage the robotic system has been developed on the NT based OS to increase the usability. The software program provides a robot installation function, a robot calibration function, a managing and arranging function for the eddy-current test, a real time 3-D graphic simulation function which offers remote reality to operators and so on. The image information acquired from the camera attached to the end-effecter is used to calibrate the end-effecter pose error and the time-delayed control algorithm is applied to calculate the optimal PID gain of the position controller. The developed robotic system has been tested in the Ulchin NPP type steam generator mockup in a laboratory.

  • PDF

The Effect of Robot-Based STEAM Class on the Korean Learning of Multiculturul School Children -Focusing on After School Learning of Elementary School- (로봇 활용 STEAM 수업이 다문화 아동의 한국어 학습에 미치는 영향 -초등학교 방과 후 수업을 중심으로-)

  • Kim, Se-Min;You, Kang-Soo
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.1-8
    • /
    • 2015
  • This paper focuses on analyzing Korean language learning effect through the STEAM class using a robot which is targeted on multicultural elementary school students. For the purpose of it, the degree of difficulty and interest of how students feel has been measured. By using the programing tool of Korean language entering base, they learn the programming commands like as variable, data type, branching statement, loop statement, etc in Korean, the effect of Korean learning has been measured. It has been examined two interviews at the beginning and the end of the second semester to measure the effect of Korean language learning. As a result of this research, It can be realized that multicultural children who have similar linguistic characteristics and cultural sphere understood Korean language easily when they take the Korean language class by utilizing a robot, and the class had an effect on the acquisition of Korean language for multicultural children.