• 제목/요약/키워드: spent coffee grounds

검색결과 29건 처리시간 0.032초

발수제 종류에 따른 코팅된 커피찌꺼기를 치환한 모르타르의 압축강도 및 흡수율 (Compressive Strength and Absorption Ratio of Mortar Replaced with Coated Spent Coffee Grounds by Type of Water Repellent)

  • 최병철;김규용;편수정;지성준;이예찬;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.63-64
    • /
    • 2023
  • In order to reduce the high absorption ratio of spent coffee grounds, this study examined the compressive strength and absorption ratio of mortar replacing coated spent coffee grounds according to the type of water repellent. In order to examine this, as the water repellent used, a silane-based water repellent (fluorine-based water repellent) and an acrylic-based water repellent, which are film-type water repellents, and a silane/siloxane-based water repellent, which are penetration-type water repellents, were used. The spent coffee grounds were coated with each of three water repellents, and mortar was prepared by mixing cement and fine aggregate. As a result of the experiment, the compressive strength and absorption ratio of the mortar replaced with coated spent coffee grounds coated with the film-type water repellent were superior to the penetration-type water repellent. Therefore, in order to reduce the high absorption ratio of spent coffee grounds, a suitable water repellent is a film-type water repellent. Among them, it is judged that the acrylic type has excellent water repellency and is suitable.

  • PDF

전기 응고법을 이용한 커피박의 전처리 및 기능성 필터 특성 연구 (A Study on the Pretreatment of the Spent Coffee Grounds using Electrocoagulation and Its Filter Characteristics)

  • 박수빈;한하늘;박하늘;임승현;유봉영;윤상화
    • 한국표면공학회지
    • /
    • 제54권4호
    • /
    • pp.209-214
    • /
    • 2021
  • As coffee consumption per person increases annually to 323 cups in 2018, treating the spent coffee ground has arisen because spent coffee ground results in soil and air pollution. The demands of air purification filters are increasing more and more because the air pollution due to the fine dust has become worse. The spent coffee grounds had a porous structure, however, the pore was blocked by organic oil compounds. Electrocoagulation, which is one of the electrochemical methods, has the potential to remove the organic compounds. The surface area of spent coffee grounds increased effectively after the electrocoagulation treatment, and surface morphology and surface area were confirmed using SEM and BET, respectively. Using the FT-IR, both the spent coffee grounds and the electrocoagulated spent coffee grounds were characterized. The filter characteristics were examined by the adsorption test using formaldehyde, one of the air pollutants.

커피박 효소분해물의 항산화 및 항충치균 활성 (Antioxidant and anticariogenic activities of enzymatic hydrolysate from spent coffee grounds)

  • 인만진;장유민;조민영;김희정;김동청
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.462-466
    • /
    • 2023
  • 커피박을 알카리 처리한 후 Viscozyme과 Alcalase로 효소분해하여 추출물을 얻었다. 커피박을 알카리와 효소로 처리하였을때 추출물의 페놀성 화합물 함량이 증가하였고, 이에 따라 양이온라디칼과 유리라디칼에 대한 우수한 소거 활성을 나타내었다. 특히 커피박에 알카리와 Alcalase를 병행 처리하였을 때 페놀성 화합물 함량과 항산화 활성이 가장 높게 나타났고, 농도에 비례하여 Streptococcus mutans 균의 생육을 억제하였다. 결론적으로 알카리 처리된 커피박의 Alcalse 효소분해물은 우수한 항산화 및 항충치균 효과를 나타내었다.

원두커피 부산물 첨가에 따른 밀싹의 성장과 엽록소 성분의 변화 (Effect of Coffee Grounds' Residue on the Growth and Chlorophyll Content of Korean Wheat Sprout)

  • 류은미;최환석;신현재
    • KSBB Journal
    • /
    • 제29권2호
    • /
    • pp.106-111
    • /
    • 2014
  • Wheat sprout (Triticum aestivum) shows excellent nutritional and health effects due to the contents in amino acids, minerals, and other nutrients rich in chlorophyll and vitamins. In this study, spent coffee grounds were used to cultivate the wheat sprout for 12 day. An amount of 0%, 20%, 40%, 60%, 80%, and 100% (w/w, based on commercial sterile soil media) spent coffee grounds were used under the same conditions. Total length and weight of wheat sprout, aboveand below-ground length and weight, and the chloropyll contents were compared. Soil media were analyzed before and after wheat cultivation, showing that 40% and 60% (w/w) coffee media promoted wheat growth in view of length and weight. Chlorophyll contents in each group showed almost constant values, while 100% (w/w) coffee media led to a slight decrease. In conclusion, spent coffee grounds stimulated wheat growth, showing nearly stable contents of chlorophyll.

Evaluation on Large-scale Biowaste Process: Spent Coffee Ground Along with Real Option Approach

  • Junho Cha;Sujin Eom;Subin Lee;Changwon Lee;Soonho Hwangbo
    • 청정기술
    • /
    • 제29권1호
    • /
    • pp.59-70
    • /
    • 2023
  • This study aims to introduce a biowaste processing system that uses spent coffee grounds and implement a real options method to evaluate the proposed process. Energy systems based on eco-friendly fuels lack sufficient data, and thus along with conventional approaches, they lack the techno-economic assessment required for great input qualities. On the other hand, real options analysis can estimate the different costs of options, such as continuing or abandoning a project, by considering uncertainties, which can lead to better decision-making. This study investigated the feasibility of a biowaste processing method using spent coffee grounds to produce biofuel and considered three different valuation models, which were the net present value using discounted cash flow, the Black-Scholes and binomial models. The suggested biowaste processing system consumes 200 kg/h of spent coffee grounds. The system utilizes a tilted-slide pyrolysis reactor integrated with a heat exchanger to warm the air, a combustor to generate a primary heat source, and a series of condensers to harness the biofuel. The result of the net present value is South Korean Won (KRW) -225 million, the result of the binomial model is KRW 172 million, and the result of the Black-Scholes model is KRW 1,301 million. These results reveal that a spent coffee ground-related biowaste processing system is worthy of investment from a real options valuation perspective.

커피 찌꺼기의 카페인 용출 및 산화분해 특성 (Extraction of Caffeine from Spent Coffee Grounds and Oxidative Degradation of Caffeine)

  • 신민정;김영훈
    • 한국환경과학회지
    • /
    • 제27권12호
    • /
    • pp.1205-1214
    • /
    • 2018
  • During the past few decades, significant increase in the consumption of coffee has led to rapid increase in the production of coffee waste in South Korea. Spent coffee waste is often treated as a general waste and is directly disposed without the necessary treatment. Spent Coffee Grounds (SCGs) can release several organic contaminants, including caffeine. In this study, leaching tests were conducted for SCGs and oxidative degradation of caffeine were also conducted. The tested SCGs contained approximately 4.4 mg caffeine per gram of coffee waste. Results from the leaching tests show that approximately 90% of the caffeine can be extracted at each step during sequential extraction. Advanced oxidation methods for the degradation of caffeine, such as $UV/H_2O_2$, photo-Fenton reaction, and $UV/O_3$, were tested. UV radiation has a limited effect on the degradation of caffeine. In particular, UV-A and UV-B radiations present in sunlight cause marginal degradation, thereby indicating that natural degradation of caffeine is minimal. However, $O_3$ can cause rapid degradation of caffeine, and the values of pseudo-first order rate constants were found to be ranging from $0.817min^{-1}$ to $1.506min^{-1}$ when the ozone generation rate was $37.1g/m^3$. Additionally, the degradation rate of caffeine is dependent on the wavelength of irradiation.

Characteristics of direct transesterification using ultrasound on oil extracted from spent coffee grounds

  • Kim, Yeong Su;Woo, Duk Gam;Kim, Tae Han
    • Environmental Engineering Research
    • /
    • 제25권4호
    • /
    • pp.470-478
    • /
    • 2020
  • Spent coffee grounds (SCG), the residue after brewing coffee beverage, is a promising biodiesel feedstock due to its high oil contents (15-20%). However, SCG should be pretreated to reduce the high free fatty acid content, which hampers transesterification reaction. To overcome this, we explored a direct transesterification reaction of SCG using ultrasound irradiation and identified the optimal sonication parameters. A high fatty acid methyl ester (FAME) content, up to 97.2%, could be achieved with ultrasound amplitude of 99.2 ㎛, irradiation time of 10 min, and methanol to oil ratio of 7:1 in the presence of potassium hydroxide concentration of 1.25 wt.%. In addition, we demonstrated that ultrasound irradiation is an efficient method to produce biodiesel from untreated SCG in a short time with less energy than the conventional mechanical stirring method. The physical and chemical properties of the SCG biodiesel met the requirements for an alternative fuel to the current commercial biodiesel.

담배가루이에 대한 곤충병원성 곰팡이 선발 및 커피박 배지에서의 배양 특성 (Selection of Entomopathogenic Fungi Against Bemisia tabaci and Culture Characterization on Spent Coffee Grounds Medium)

  • 장지원;허인지;황동영;김슬기;신태영
    • 한국유기농업학회지
    • /
    • 제31권4호
    • /
    • pp.427-439
    • /
    • 2023
  • The silverleaf whitefly, Bemisia tabaci, is a major pest distributing worldwide damaging over 900 host plant species, and is highly resistant to chemical pesti- cides. Due to the high pesticide resistance of whitefly, there is a need for alternatives to chemical control. Entomopathogenic fungi are candidates for biological pesticide that can overcome the resistance problem of chemical pesticide. Therefore, in this study, we tested pathogenicity of the entomopathogenic fungi to select high insec- ticidal activity against whitefly. As a result, IPBL-C (Cordyceps fumosorosea) and IPBL-F (Metarhizium pinghaense) isolates showed high insecticidal activity against whitefly. Additionally, as a result of culturing the selected isolates on spent coffee grounds medium, the conidia of IPBL-F produced on coffee grounds medium showed five times higher heat stability after heat treatment at 45℃ for one hour than conidia produced on PDA medium.

커피찌꺼기를 활용한 콘크리트 혼화재의 개발 (Development of Mineral Admixture for Concrete Using Spent Coffee Grounds)

  • 김성배;이재원;최윤석
    • 한국건설순환자원학회논문집
    • /
    • 제10권3호
    • /
    • pp.185-194
    • /
    • 2022
  • 커피는 세계에서 가장 많이 소비되는 음료 중 하나이며 석유에 이어 두 번째로 많이 거래되는 상품이다. 커피의 수요가 많은 만큼 커피 산업에서는 독성이 있고 심각한 환경문제를 일으키는 다량의 폐기물이 생성된다. 본 연구는 사용된 커피찌꺼기(SCG)를 재활용하여 콘크리트 제조 시 시멘트를 대체하는 혼화재로써의 활용가능성을 확인하는 것을 목표로 한다. 커피찌꺼기를 재활용하기 위해서 커피찌꺼기는 수분 제거를 위해 건조되고 850℃의 소성로에서 8시간 동안 소성하며, 탄화된 커피찌꺼기는 볼밀 분쇄를 통해 커피찌꺼기 애시(CGA)로 제조된다. 제조된 커피찌꺼기 애시의 화학성분 분석은 XRF로 수행하였으며, 화학성분 분석결과 커피찌꺼기 애시의 주요 성분은 K2O(51.74 %), CaO(15.92 %), P2O5(14.39 %)이며 MgO(7.74 %), SO3(6.89 %)의 부성분과 소량의 F2O3(0.66 %), SiO2(0.59 %), Al2O3(0.31 %)가 함량되어 있다. 물리 역학적 특성을 평가하기 위해 커피찌꺼기 애시를 5 %, 10 %, 15 % 중량 치환하여 수행하였다. 품질 시험결과, 커피찌꺼기 애시가 5 % 치환된 CGA 5의 28일 활성지수는 80 %이며, 플로 값 비는 96 %로 플라이 애시 2종의 품질기준을 만족하는 것으로 나타났다. 모르타르의 역학적 시험결과로부터 커피찌꺼기 5 %가 포함된 시편에서 최적의 결과를 확인할 수 있었으며, 우수한 기계적, 물리적 특성을 보여주었다.

커피찌꺼기 퇴비화 과정의 물리, 화학 및 생물학적 변화 (Changes in Physical, Chemical, and Biological Traits During Composting of Spent Coffee Grounds)

  • 신지환;박승혜;김아름;손이헌;주세환
    • 한국환경농학회지
    • /
    • 제39권3호
    • /
    • pp.178-187
    • /
    • 2020
  • BACKGROUND: Spent coffee grounds are the most valuable resource for agriculture and industry. However, it is almost thrown untreated into landfills or incineration. Composting is an efficient process for converting spent coffee to fertilizer. METHODS AND RESULTS: Composting was conducted in the compost pile (40 ㎥) equipped with a forced aeration system. Physical and chemical properties containing temperature, pH, electrical conductivity, and moisture were measured through the composting period. Moreover, biological changes were examined for the composting phase using Illumina Miseq sequencing of the 16S rRNA gene. We found 7-14 phyla comprising 250-716 species from a variety phase of compost. During the composting period, Firmicutes were dominated, followed by Actinobacteria and Proteobacteria. CONCLUSION: The result indicated that the use of spent coffee improved the quality of organic fertilizer and changed the microbial communities, unique to the thermal composting stage, which could enhance the composting process. These findings suggest that spent coffee composted material can provide a significant amount of nutrients, thereby supporting plant growth.