• Title/Summary/Keyword: spent catalyst

Search Result 88, Processing Time 0.025 seconds

A Study on the Possibility of Using of Spent RHDS Catalyst as a SCR Catalyst wash-coated on the metal corrugated substrate (폐 RHDS 촉매재생 후 메탈 코로게이트 지지체상에서 워시코팅에 의한 NOx 저감 SCR 촉매에 관한 연구)

  • Na, Woo-jin;Cha, Eunji;Kang, Dae-hwan;Go, Young-ju;Cho, Ye-ji;Choi, Eun-young;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.723-732
    • /
    • 2020
  • The spent RHDS (Residue HydroDeSulfurization) catalyst is deactivated mainly by deposition of various contaminants such as coke, sulfur and vanadium on the surface of catalyst. To eliminate those contaminants, the following remanufacturing process was conducted. The first, heavy oil on the surface of the spent RHDS catalyst was removed by kerosene and dehydrated. The second, the high temperature incineration was carried out to eliminate coke and sulfur components deposited on the surface of spent RHDS catalyst. The third, the excessive quantity of Vanadium deposited on the surface of catalyst was removed by leaching process as follows: ultrasonic agitation was carried out at 50℃, for 10 seconds with 0.5% and 1% oxalic acid solution. The purpose of this process is to find out regenerated RHDS catalyst can be used as SCR catalyst for NOx reduction by controlling the vanadium residual content of the regenerated RHDS catalyst through leaching process. The composition of regenerated RHDS catalyst was analyzed by XRF and the NOx reduction efficiency was also measured by continuous catalytic fixed bed reactor. As the result, regenerated catalyst, with 0.5% oxalic acid, ultrasonic agitation in 10 seconds, showed the most stable NOx reduction efficiency. Also, in comparison with commercial SCR catalyst, the NOx reduction performance of regenerated catalyst was similar to that of commercial SCR catalyst at the temperature 375℃ and higher whereas was lower than commercial SCR catalyst at the temperature range between 200~250℃. Therefore, it was confirmed that the regenerated catalyst as powder form wash coated on the surface of metal corrugated substrate can be used for commercial SCR catalyst.

Treatment of Metal Wastes with Manganese Nodules (망간단괴 제연 시 금속계 폐자원의 처리)

  • Park Kyung-Ho;Nam Chul-Woo;Kim Hong-In;Park Jin-Tae
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.17-21
    • /
    • 2005
  • Deep-sea Manganese nodules was treated with reduction-smelting process with adding the spent Ni-Cd battery or the cobalt contained spent catalyst for recovery of nickel and cobalt metals. The nickel in the spent Ni-Cd battery could be recovered by adding $5\%$ coke as a reducing agent regardless of the amount of battery added. However, to recover cobalt from the spent catalyst, it is require to add more coke for reduction of cobalt oxide in the catalyst. The treatment of metal wastes with manganese nodules can contribute to lower the cost for the processing of nodules and to facilitate the recycling of metal wastes.

Leaching of Vanadium and Tungsten from Spent SCR Catalysts for De-NOx by Soda Roasting and Water Leaching Method (소다배소(焙燒) 및 수침출법(水浸出法)에 의한 탈질용(脫窒用) 폐(廢) SCR 촉매(觸媒)로부터 바나듐과 텅스텐 침출(浸出))

  • Kim, Hye-Rim;Lee, Jin-Young;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.65-73
    • /
    • 2012
  • Selective catalytic reduction(SCR) catalysts are obtained from de-NOx system of thermoelectric power plant. A process was developed for valuable metals such as vanadium and tungsten recovery from spent SCR catalyst by using soda roasting followed by water leaching. Spent SCR catalyst having $V_2O_5$(1.23 mass %) and $WO_3$(7.73 mass %). For getting soluble metal forms of the targeted metals like vanadium and tungsten soda roasting process was implemented. In soda roasting process, sodium carbonate added 5 equivalent ratio at roasted temperature $850^{\circ}C$ with 120 min roasted time for $544{\mu}m$ particle size of spent SCR catalyst. After soda roasting process moved to water leaching for roasted spent catalyst. Before leaching process the roasted spent catalyst was grinded up to $-45{\mu}m$ size. The leaching time is 30 min at $40^{\circ}C$ temperature, 10 % pulp density. The final leaching efficiency obtained 46 % of vanadium and 92 % of tungsten from present process.

Sulfuric Acid Leaching of Valuable Metals from Spent Petrochemical Catalyst using Hydrogen Peroxide as a Reducing Agent

  • Park, Kyung-Ho;Sohn, Jeong-Soo;Kim, Jong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.478-481
    • /
    • 2001
  • The spent petrochemical catalyst used in the manufacturing process of terephthalic-acid contains valuable metals such as cobalt and manganese. To recover these metals, sulfuric acid leaching was performed with hydrogen peroxide as a reducing agent. Low extractions of Mn, Co and Fe were obtained by sulfuric acid leaching without reducing agent. With adding hydrogen peroxide as a reducing agent, the high extraction of these metals could be obtained. Different from general leaching experiment, the extraction rates of metal components were decreased with increasing reaction temperature in this case. Under the optimum condition, the extraction rates of Mn, Co and Fe were 93.0%, 87.0% and 100% respectively.

  • PDF

The Optimum Condition Analysis of Vanadium Solvent Extraction by Alamine336 from the Synthetic Vanadium Sulfate Solution. (황산바나듐 모의용액으로부터 Alamine336에 의한 바나듐 용매추출의 최적조건 연구)

  • Ahn, Jong-Gwan;Ahn, Jae-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.823-829
    • /
    • 2008
  • The solvent extraction process for the recovery of vanadium from leaching solution of SCR(selective catalytic reduction) spent catalyst was investigated by using Alamine336 as an extractant. The effects of experimental conditions, such as initial pH and concentration of sulfate ion, and ammonia concentration of stripping solution were studied. The extraction percentage of vanadium were increased with the increase of initial pH of leaching solution and decreased with the increase of sulfate ion. More than 99% of vanadium in leaching solution were extracted and stripped at the A/O ratio of 1.0 in 2 stages. On the basis of these results, an optimum solvent extraction process which vanadium was effectively recovered from SCR spent catalyst was proposed.

Utilization of Spent Catalysts for the Removal of VOCs (휘발성 유기화합물 제거를 위한 폐 촉매의 이용)

  • Kim, Sang Chai;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.303-313
    • /
    • 2007
  • Various commercial catalysts used in chemical related applications have been disposed as an industrial waste when the catalytic activity of catalysts is not good enough to achieve an optimum yield. In addition, the amount of disposed three way catalysts (TWC) has been continuously increased. Considering the physicochemical, environmental, and economical characteristics, the deactivated spent catalysts can be treated in several alternative ways such as regeneration, recycling, and disposal. In view of the environmental and economical matters, the spent catalyst should be regenerated and used for the various purposes, although its activity is not as good as a fresh catalyst. On the other hand, spent catalysts containing noble and metal oxides can be applicable for the catalytic oxidation of volatile organic compounds (VOCs) by applying the proper treatment method. Therefore in this review the quantity of the spent catalysts and the available regeneration methods for the spent catalysts are briefly summarized and especially the proper regeneration method for applying the catalytic oxidation of VOCs and its results are introduced.

A Study on the Charateristics for Ozone Decomposition over Recovered Mn from Spent Betteries (폐건전지에서 회수된 Mn을 이용한 오존분해 특성 연구)

  • Kim, Geo Jong;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.161-164
    • /
    • 2013
  • In this study, the application of recovered metals from spent batteries by extraction was investigated for ozone decomposition as a catalyst. Among the recovered metals, Mn contents was the most important factor for ozone decomposition. It was also found that the deactivation rate of the catalyst was dependent on the Zn contents, while K contents and activities were not perfectly correlated for ozone decomposition. In addition, the catalytic activity the $TiO_2$ added catalyst was decreased, due to the reduction of Mn contents. The structural characteristics of maganase oxide was not associated with the catalytic activity for ozone decomposition.

A Study on the Magnetic Separation of Magnetite from Spent Iron-oxide Catalyst (폐 산화철촉매로부터 마그네타이트의 자력선별에 관한 연구)

  • 현종영;이효숙;이우철;채영배
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.31-36
    • /
    • 2002
  • Magnetic separation was carried out in order to improve the magnetite grade of the spent iron oxide catalyst, that was composed with magnetite, ceria and soluble alkaline salt. The recovery of magnetite from the spent iron oxide catalyst was over 99%, and the magnetite contents was upgraded to about 80% from 70% via wet type magnetic separation at 500 Gauss. This improvement was due to the removal of alkaline salt by water instead of the magnetic separation.

Recovery of the Vanadium and Tungsten from Spent SCR Catalyst Leach Solutions by Hydrometallurgical Methods (SCR 폐촉매 침출액으로부터 습식제련법에 의한 바나듐, 텅스텐의 회수)

  • Choi, In-Hyeok;Moon, Gyeonghye;Jeon, Jong-Hyuk;Lee, Jin-Young;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.62-68
    • /
    • 2020
  • In new millennium, wide-reaching demands for selective catalytic reduction (SCR) catalyst have been increased gradually in new millennium. SCR catalyst can prevent the NOx emission to protect the environment. In SCR catalyst the main composition of the catalyst is typically TiO2 (70~80%), WO3 (7~10%), V2O5 (~1%) and others. When the SCR catalysts are used up and disposed to landfills, it is problematic that those should exist in the landfill site permanently due to their extremely low degradability. A new advanced technology needs to be developed primarily to protect environment and then recover the valuable metals. Hydrometallurgical techniques such as leaching and liquid-liquid extraction was designed and developed for the spent SCR catalyst processing. In a first stage, V and W selectively leached from spent SCR catalyst, then both the metals were processed by liquid-liquid extraction process. Various commercial extractants such as D2EHPA, PC 88A, TBP, Cyanex 272, Aliquat 336 were tested for selective extraction of title metals. Scrubbing and stripping studies were tested and optimized for vanadium and tungsten extraction and possible separation. 3rd phase studies were optimized by using iso-decanol reagent.

Separation and Recovery of Ce, Nd and V from Spent FCC Catalyst (FCC 폐촉매로부터 Ce, Nd 및 V의 분리 회수 프로세스)

  • Jeon, Sung Kyun;Yang, Jong Gyu;Kim, Jong Hwa;Lee, Sung Sik
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.679-684
    • /
    • 1997
  • The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The selective adsorption and concentration of Ce and Nd from the leaching solution of spent FCC catalysts with sulfuric acid($0.25mol/dm^3$) were carried out by the column method with a chelate resin having a functional group of aminophosphoric acid type. Ce and Nd were separated from eluate liquor containing Al, Nd and V by the precipitation process with oxalic acid. Vanadium is purified from chloride ion coexistance by solvent extraction, employing tri-n-octyl phosphine oxide as extractant with Al in the raffinate solution. Rare metals with the purity of 99 percent were obtained from the spent FCC catalyst.

  • PDF