• Title/Summary/Keyword: speed ripple

Search Result 359, Processing Time 0.029 seconds

Torque Ripple Reduction of High Speed Miniature BLDC with Instantaneous Voltage Control (순시전압제어를 통한 초고속 소형 BLDC의 진동억제기법)

  • Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo;Won, Tae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.627-628
    • /
    • 2006
  • Miniature BLDC is widely used in industrial applications because of high driving efficiency and high torque characteristic. Otherwise the general BLDC, torque ripple of a high speed miniature BLDC is serous during conduction due to the very low electrical time constant. This paper present instant voltage and current control for torque ripple reduction of a high speed miniature BLDC. Computer simulation and experiment test for 40,000 rpm miniature BLDC show the verification of the proposed control method.

  • PDF

Comparison of Dynamic Characteristics of the Single phase induction motor at Single Phase and Two Phase control (단상 유도전동기의 단상 및 2상 제어 운전시 동작특성 비교)

  • Yang, B.Y.;Kwon, S.H.;Kwon, B.I.;Lee, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.936-938
    • /
    • 2003
  • The single Phase induction motor is used to small size electronic appliance by production cost of a low-cost. But, it is low efficiency large torque ripple and impossible speed control. However we can change the speed if it similar to the three phase induction motor. And we studied about the two phase induction motor that torque ripple is smaller. So, in this paper the dynamic characteristics of the two phase induction motor are described and compared with the cage-type single phase induction motor to find the characteristics of the torque ripple and current, speed through the time-stepped finite element method.

  • PDF

A Torque Ripple Reduction of Miniature BLDC using Instantaneous Voltage Control (초고속 소형 BLDC의 순시 전압 제어에 의한 토크 리플 억제)

  • Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.191-198
    • /
    • 2007
  • This paper proposes the instantaneous source voltage and phase current control for torque ripple reduction of a high speed miniature BLDC motor. As compared with general BLDC motor, a high speed miniature BLDC motor has a fast electrical time-constant. So the current and torque ripple are very serious in a conventional PWM switching during conduction period. In order to reduce the switching current ripple, instantaneously controlled source voltage is supplied to the inverter system according to the motor speed and load torque. In addition, the fast hysteresis current controller can keep the phase current In the limited band. The proposed method is verified by the computer simulation and experimental results.

Improvement of Low Speed Stability of CMG Gimbal Using Full-pitch Distributed Winding (전절권 분포형 권선을 통한 제어모멘트자이로 김블의 저속 안정성 개선 연구)

  • Lee, Jun-yong;Lee, Hun-jo;Oh, Hwa-suk;Song, Tae-Seong;Kang, Jeong-min;Song, Deok-ki;Seo, Joong-bo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • The electromagnetic forces generate a torque on the gimbal motor, and changes in the coil current causes torque ripple. This affects the gimbals' speed and results to unstable satellite attitude. It is therefore essential to reduce the torque ripple of the gimble motor with the aim of improving the attitude control accuracy of the satellite. This paper theoretically analyzes the torque generated from the modeling of a motor for general concentrated winding and distributed winding. The prototype was designed and fabricated through selection of the winding that reduces the torque ripple through simulation results. The results of the magnetic fields' theoretical analysis and the back electromotive force of the prototype were compared with the calibrated results for verification of conformity and manufacture of the design. The low-speed test proved that the torque ripple is reduced by improving the speed stability.

A Comparative Study on the Exterior Rotor BLDC Motor According to the Rotor Permanent Magnet Shape (회전자 영구자석 형상에 따른 외전형 BLDC 전동기의 특성비교 연구)

  • Jeong, Jae-Hoon;Cho, Han-Wook;Choi, Jang-Young;Im, Young-Hun;Jang, Seok-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.237-244
    • /
    • 2014
  • In this paper, we presented a study on the design of permanent magnet rotor for exterior rotor type brushless direct current(BLDC) motor. To reduce the cogging torque and torque ripple, the specific shape and magnetization pattern of permanent magnets in BLDC motors are suggested. Firstly, four permanent magnet models with different shapes and magnetization arrays are presented. The results from the finite element method(FEM), the most effective model for reducing cogging torque and torque ripple was presented. In addition, to confirm the steady state performance, the torque-speed characteristic analysis has been performed with variable speed and load. Finally, the best permanent magnet model for reducing cogging torque and torque ripple with appropriate torque-speed performance was selected through the comparison according to the device volume.

Influence of Different Frequency Harmonic Generated by Rectifier on High-speed Permanent Magnet Generator

  • Qiu, Hongbo;Wei, Yanqi;Yang, Cunxiang;Fan, Xiaobin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1956-1964
    • /
    • 2018
  • Since the stator winding of High-Speed Permanent Magnet Generator (HSPMG) has few winding turns and low inductance value, it is more prone to be influenced by harmonic current. Moreover, the operation efficiency and the torque stability of HSPMG will be greatly influenced by harmonic current. Taking a 117 kW, 60 000 rpm HSPMG as an example, in order to analyze the effects of harmonic current on HSPMG in this paper, the 2-D finite element electromagnetic field model of the generator was established and the correctness of the model was verified by testing the generator prototype. Based on the model, the losses and torque of the generator under different frequency harmonic current were studied. The change rules of the losses and torque were found out. Based on the analysis of the influence of the harmonic phase angle on torque ripple, it is found that the torque ripple could be weakened through changing the harmonic phase angle. Through the analysis of eddy current density in rotor, the change mechanism of the rotor eddy current loss was revealed. These conclusions can contribute to reduce harmonic loss, prevent demagnetization fault and optimize torque ripple of HSPMG used in distributed power supply system.

A Speed Control Scheme with The Torque Compensator based on the Activation Function for PMSM (PMSM에 대한 활성화 함수를 가지는 토크 보상기의 속도제어)

  • Kim, Hong Min;Lim, Geun Min;Ahn, Jin Woo;Lee, Dong Hee
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.315-316
    • /
    • 2011
  • This paper presents speed control scheme of the PMSM which has torque compensator to reduce the speed error and ripple. The proposed speed controller is based on the conventional PI control scheme. But the additional torque compensator which is different to the conventional differential controller produces a compensation torque to suppress speed ripple. In order to determine the proper compensation, the activation function which has discrete value is used in the proposed control scheme. With the proposed activation function, the compensation torque acts to suppress the speed error increasing. The proposed speed control scheme is verified by the computer simulation and experiments of 400[W] PMSM. In the simulation and experiments, the proposed control scheme has better control performance compare than the conventional PI and PID control schemes.

  • PDF

Sensorless Speed Control for PMSM Using an Improved Full-Order Flux Observer (개선된 전차원 자속 관측기를 사용한 영구자석 동기전동기의 센서리스 속도 제어)

  • Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.565-572
    • /
    • 2013
  • The sensorless speed control using the improved full-order flux observer for PMSM is proposed in this paper. A conventional full-order flux observer has a drawback that the estimated flux of this observer contains the ripple component at the low speed range due to the increased gains of the convectional full-order flux observer. The improved full-order flux observer with the modified gains guarantee the improved estimation performance without ripple component at the from zero to high speed range. To identify the performance of proposed observer, the simulation and experiment are conducted and this performance is compared with the conventional full-order observer.

Analysis of the Acoustic Noise Characteristics by Controlling Lead Angle in Brushless DC Motors (진상각 제어에 따른 BLDC 전동기의 소음 특성 해석)

  • 황상문;김경태;정승규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.101-109
    • /
    • 2000
  • Mutual torque ripple in a brushless DC motor is the main source of acoustic noise, especially fur motor operation with high speed and torque. This paper presents a method to obtain mutual torque ripple to identify acoustic noise source. Mutual torque ripple can be determined by analyzing phase current shape and magnetic circuit with different lead angles. Current shape is determined by state space model of voltage equation with the use of inductance calculated by FEM, and confirmed by experimental results. Mutual torque ripple is also determined by FEM analysis for the calculated current shape. Acoustic noise experiment reveals that mutual torque ripple with different lead angle is one of the main sources for noise generation in a brushless DC motor.

  • PDF

A Comparative Study of Operating Angle Optimization of Switched Reluctance Motor with Robust Speed Controller using PSO and GA

  • Prabhu, V. Vasan;Rajini, V.;Balaji, M.;Prabhu, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.551-559
    • /
    • 2015
  • This paper's focus is in reducing the torque ripple and increasing the average torque by optimizing switching angles of 8/6 switched reluctance motor while implementing a robust speed controller in the outer loop. The mathematical model of the machine is developed and it is simulated using MATLAB/Simulink. An objective function and constraints are formulated and Optimum turn-on and turn-off angles are determined using Particle swarm optimization and Genetic Algorithm techniques. The novelty of this paper lies in implementing sliding mode speed controller with optimized angles. The results from both the optimization techniques are then compared with initial angles with one of them clearly being the better option. Speed response is compared with PID controller.