• Title/Summary/Keyword: speed estimation error

Search Result 382, Processing Time 0.03 seconds

Sensorless Induction Motor Vector Control Using Stator Current-based MRAC (고정자 전류 기반의 모델 기준 적응 제어를 애용한 유도전동기의 센서리스 벡터제어)

  • 박철우;최병태;권우현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.692-699
    • /
    • 2003
  • A novel rotor speed estimation method using Model Reference Adaptive Control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed mettled, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estmation error is unclear. Yet, in the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation and is robust to the parameters error In addition, the proposed method of offers a considerable improvement in the performance of a sensorless vector controller at a low speed. The superiority of the proposed method is verified by simulation and experiment in a low speed region and at a zero-speed.

A Robust MRAC-based Speed Estimation Method to Improve the Performance of Sensorless Induction Motor Drive System in Low Speed (저속영역에서 센서리스 벡터제어 유도전동기의 성능을 향상시키기 위한 MRAC 기반의 강인한 속도 추정 기법)

  • 박철우;권우현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.37-46
    • /
    • 2004
  • A novel rotor speed estimation method using model reference adaptive control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed method, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estimation error is unclear. In the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation. The robustness of the rotor flux-based MRAC, back EMF-based MRAC, and proposed MRAC is compared based on a sensitivity function about each error of stator resistance, rotor time constant, mutual inductance. Consequently, the proposed method is much more robust than the conventional methods as regards errors in the mutual inductance, stator resistance. Therefore, the proposed method offers a considerable improvement in the performance of a sensorless vector controller at a low speed. In addition, the superiority of the proposed method and the validity of sensitivity functions were verified by simulation and experiment.

A Study of the ZCP Estimation Methods considering Discretization Error and High Speed BLDC Sensorless Drive (이산화 오차를 고려한 ZCP 추정방법과 고속 BLDC 센서리스 구동에 관한 연구)

  • Seo, Eunjeong;Sohn, Jeongwon;Sunwoo, Myoungho;Lee, Wootaik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.95-102
    • /
    • 2014
  • This paper presents zero crossing point(ZCP) estimation methods considering discretization error for a high speed brushless DC(BLDC) motor drive. The ZCP is estimated by detecting the change of back-EMF polarity for the BLDC sensorless drive, and the discretization error exist on the estimated ZCP. The discretization error of the ZCP is a cause of the delay of a commutation timing of current and increment of a current ripple factor. Besides a delay of a ZCP estimation brings on the limitation of a speed range for the BLDC sensorless drive. The compensation method based on the error analysis with probability theory for reducing the effects of the discretization error of the ZCP is proposed. Also a ZCP estimation method according to the Back-EMF patterns is proposed to widen the speed range for the BLDC sensorless drive. The proposed methods are verified by the experiment.

Study on the analysis Adaptive Observers to Control SRM Control Meathod (SRM 제어방법들에 대한 적응관측기들의 분석)

  • Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.160-164
    • /
    • 2007
  • MRAS observer, which is based on adaptive control theory, estimates speed and position by using optimal observer gains on the basis of Lyapunov stability theory. However, in case of MRAS theory, position estimation error is in existence because of non-linearity for inductance variation and limit cycles for position estimation. The adaptive sliding observer based on the variable structure control theory estimates the speed and position for zero of estimation error by using the sliding surface equal to the error between speed and position estimation. The binary observer estimates the rotor speed and rotor flux with alleviation of the high-frequency chattering, and retains the benefits achieved in the conventional sliding observer, such as robustness to parameter and disturbance variations. The speed and position sensorless control of SRM under the load and inductance variation is verified by the experimental results.

  • PDF

A Study on the Design of Correction Filter for High-Speed Guided Missile Firing from Warship after Transfer Alignment (전달정렬 함상 발사 고속 유도무기의 보정필터 설계에 대한 연구)

  • Kim, Cheon-Joong;Lee, In-Seop;Oh, Ju-Hyun;Yu, Hae-Sung;Park, Heung-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.108-121
    • /
    • 2019
  • This paper presents the study results on the design of the correction filter to improve the azimuth error estimation of the high-speed guided missile launched from the warship after the transfer alignment. We theoretically proved that the transfer alignment performance is determined by the accuracy of the marine inertial navigation system and the observability of the attitude error state variable in the transfer alignment filter, and that most of navigation errors in high-speed guided missile are caused by azimuth error. In order to improve the azimuth estimation performance of the correction filter, the multiple adaptive estimation method and the adaptive filters adapting the measurement noise covariance or the process noise covariance are proposed. The azimuth estimation performance of the proposed adaptive filter and the existing Kalman filter are compared and analyzed each other for 8 different transfer alignment accuracy cases. As a result of comparison and analysis, it was confirmed that the adaptive filter adapting the process noise covariance has the best azimuth estimation performance. These results can be applied to the design of correction filters for high-speed guided missile.

A Design of Programmable Low Pass Filter to Reduce the ZCP Estimation Error at High Speed BLDC Sensorless Drive (BLDC 고속 센서리스 구동의 ZCP 추정 오차 저감을 위한 Programmable Low Pass Filter 설계)

  • Seo, Eunjeong;Lee, Kangseok;Lee, Wootaik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • This paper presents a design method of programmable low pass filter(PLPF) which reduce an estimation error of a zero crossing point(ZCP) for a high speed brushless DC(BLDC) motor drive. BLDC motor sensorless drive is possible by estimation of ZCP. The ZCP estimated by detecting a change of back-EMF polarity has the estimation error because noises exist on the measured back-EMF. Therefore a calculated commutation timing using the ZCP is inaccurate. And the inexact commutation timing leads to ripples of 3-phase current and degradation of drive performance. This paper proposes the design method of the PLPF to overcome these problems. First, a speed calculated a inaccurate period of the ZCP is analyzed in the frequency domain. Then, the PLPF that has varying cut-off frequency according to change of the speed is designed on the frequency analysis result. The proposed method is verified by the experiment.

Accuracy Enhancement of Parameter Estimation and Sensorless Algorithms Based on Current Shaping

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Dead time is typically incorporated in voltage source inverter systems to prevent short circuit cases. However, dead time causes an error between the output voltage and reference voltage. Hence, voltage equation-based algorithms, such as motor parameter estimation and back electromotive force (EMF)-based sensorless algorithms, are prone to estimation errors. Several dead-time compensation methods have been developed to reduce output voltage errors. However, voltage errors are still common in zero current crossing areas, and an effect of the error is much worse in a low speed region. Therefore, employing voltage equation-based algorithms in low speed regions is difficult. This study analyzes the conventional dead-time compensation method and output voltage errors in low speed operation areas. A current shaping method that can reduce output voltage errors is also proposed. Experimental results prove that the proposed method reduces voltage errors and improves the accuracy of the parameter estimation method and the performance of the back EMF-based sensorless algorithm.

Analysis and Improvement of Low-Frequency Control of Speed-Sensorless AC Drive Fed by Three-Level Inverter

  • Chang Jie (Jay)
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.358-365
    • /
    • 2005
  • In induction machine drive without a speed sensor, the estimation of the motor flux and speed often becomes deteriorated at low speeds with low back EMF. Our analysis shows that, in addition to the state resistance variation, the estimated value of field orientation angle is often corrupted by accumulative errors from the integration of voltage variables at motor terminals that have low signal/noise ratio at low frequencies. A repetitive loop path of integration in the feedback can amplify this type of error, thus speeding up the degradation process. The control system runs into information starvation due to the loss of correct field orientation. The machine's spiral vectors are controlled only in a reduced dimension in this situation. A novel control scheme is developed to improve the control performance of motor's current, torque and speed at low frequencies. The scheme gains a full-dimensional vector control and is less sensitive to the combined effect of the error sources at the low frequencies. Experimental tests demonstrate promising performances are achievable even below 0.5 Hz.

Sensorless Control of Permanent Magnet Synchronous Motors with Compensation for Parameter Uncertainty

  • Yang, Jiaqiang;Mao, Yongle;Chen, Yangsheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1166-1176
    • /
    • 2017
  • Estimation errors of the rotor speed and position in sensorless control systems of Permanent Magnet Synchronous Motors (PMSM) will lead to low efficiency and dynamic-performance degradation. In this paper, a parallel-type extended nonlinear observer incorporating the nominal parameters is constructed in the stator-fixed reference frame, with rotor position, speed, and the load torque simultaneously estimated. The stability of the extended nonlinear observer is analyzed using the indirect Lyapunov's method, and observer gains are selected according to the transfer functions of the speed and position estimators. Taking into account the parameter inaccuracies issue, explicit estimation error equations are derived based on the error dynamics of the closed-loop sensorless control system. An equivalent flux error is defined to represent the back Electromotive Force (EMF) error caused by the inaccurate motor parameters, and a compensation strategy is designed to suppress the estimation errors. The effectiveness of the proposed method has been validated through simulation and experimental results.

Analysis of characteristics of position/speed estimator of an adaptive sensorless controller for PMSM (PMSM 적응 센서리스 제어기의 속도/위치 추정기의 특성 분석)

  • Lee, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.503-504
    • /
    • 2015
  • This paper deals with the analysis of characteristics of position and speed estimator of an adaptive sensorless control algorithm for PMSM drives. The analysis shows that the back emf constant variation results in the position estimation error, but does not the speed estimation error. The simulation and experimental results are shown to verify the analysis result and the usefulness of the back emf constant estimator.

  • PDF