• Title/Summary/Keyword: speed distribution

Search Result 2,387, Processing Time 0.024 seconds

Spatial and temporal distribution of Wind Resources over Korea (한반도 바람자원의 시공간적 분포)

  • Kim, Do-Woo;Byun, Hi-Ryong
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.171-182
    • /
    • 2008
  • In this study, we analyzed the spatial and temporal distribution of wind resources over Korea based on hourly observational data recorded over a period of 5 years from 457 stations belonging to Korea Meteorological Administration (KMA). The surface and 850 hPa wind data obtained from the Korea Local Analysis and Prediction System (KLAPS) and the Regional Data Assimilation and Prediction System (RDAPS) over a period of 1 year are used as supplementary data sources. Wind speed is generally high over seashores, mountains, and islands. In 62 (13.5%) stations, mean wind speeds for 5 years are greater than $3ms^{-1}$. The effects of seasonal wind, land-sea breeze, and mountain-valley winds on wind resources over Korea are evaluated as follows: First, wind is weak during summer, particularly over the Sobaek Mountains. However, over the coastal region of the Gyeongnam-province, strong southwesterly winds are observed during summer owing to monsoon currents. Second, the wind speed decreases during night-time, particularly over the west coast, where the direction of the land breeze is opposite to that of the large-scale westerlies. Third, winds are not always strong over seashores and highly elevated areas. The wind speed is weaker over the seashore of the Gyeonggi-province than over the other seashores. High wind speed has been observed only at 5 stations out of the 22 high-altitude stations. Detailed information on the wind resources conditions at the 21 stations (15 inland stations and 6 island stations) with high wind speed in Korea, such as the mean wind speed, frequency of wind speed available (WSA) for electricity generation, shape and scale parameters of Weibull distribution, constancy of wind direction, and wind power density (WPD), have also been provided. Among total stations in Korea, the best possible wind resources for electricity generation are available at Gosan in Jeju Island (mean wind speed: $7.77ms^{-1}$, WSA: 92.6%, WPD: $683.9Wm^{-2}$) and at Mt. Gudeok in Busan (mean wind speed: $5.66ms^{-1}$, WSA: 91.0%, WPD: $215.7Wm^{-2}$).

Fabrication of the Nano-Sized Nickel Oxide Powder by Spray Pyrolysis Process

  • Yu, Jae-Keun;NamGoong, Hyun;Kim, Dong-Hee
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.426-432
    • /
    • 2012
  • This study involves using nickel chloride solution as a raw material to produce nano-sized nickel oxide powder with average particle size below 50 nm by the spray pyrolysis reaction. The influence of the inflow speed of raw material solution on the properties of the produced powder is examined. When the inflow speed of the raw material solution is at 2 ml/min., the average particle size of the powder is 15~25 nm and the particle size distribution is relatively uniform. When the inflow speed of the solution increases to 10 ml/min., the average particle size of the powder increases to about 25 nm and the particle size distribution becomes much more uneven. When the inflow speed of the solution increases to 20 ml/min., the average particle size of the powder increases in comparison to the case in which the inflow speed of the solution was 10 ml/min. However, the particle size distribution is very uneven, showing various particle size distributions ranging from 10 nm to 70 nm. When the inflow speed of solution increases to 50 ml/min., the average particle size of the powder decreases in comparison to the case in which the inflow speed was 20 ml/min., and the particle size distribution shows more evenness. As the inflow speed of the solution increases from 2 ml/min. to 20 ml/min., the XRD peak intensities gradually increase, while the specific surface area decreases. When the inflow speed of solution increases to 50 ml/min., the XRD peak intensities rather decrease, while the specific surface area increases.

An Experimental Study on the Pressure and Temperature Distribution in a Plain Journal Bearing (저어널베어링의 압력 및 온도분포에 관한 실험적 연구)

  • 신영재;김경웅
    • Tribology and Lubricants
    • /
    • v.4 no.1
    • /
    • pp.69-73
    • /
    • 1988
  • The effects of journal speed and bearing load on pressure distribution and the temperature distribution of bearing surface are investigated experimentally. The journal bearing which has 219.94mm diameter, length-to-diameter ratio of L/D=0.8 and clearance ratio of 0.004 is used. Journal has a built-in pressure transducer for the measurement of pressure distribution in the mid plane of bearing. Bearing surface temperatures are measured at 60 points. The bearing load is varied from 300 N to 5900 N and journal speed from 300 rpm to 2500 rpm. As the load is increased under constant speed, the location of maximum pressure moves to the site of minimum film thickness, and maximum pressure and absolute value of minimum pressure are increased. The temperature distribution in vicinity of oil inlet shows that heated lubricant's carry-over exists around the oil inlet.

Freeway Design Capacity Estimation through the Analysis of Time Headway Distribution (차두시간분포 분석을 통한 고속도로 설계용량 산정모형의 개발)

  • Kim, Jum San;Park, Chang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.251-258
    • /
    • 2006
  • This study is to develop an estimation method of freeway design capacity through the analysis of time headway distribution in continuum flow. Traffic flow-speed diagram and time headway distribution plotted from individual vehicle data shows: a) a road capacity is not deterministic but stochastic, b) time headway distribution for each vehicle speed group follows pearson type V distribution. The freeway design capacity estimation model is developed by determining a minimum time headway for capacity with stochastic method. The estimated capacity values for each design speed are lower when design speed ${\leq}80km/h$, and higher when design speed ${\geq}106km/h$ in comparison with HCM(2000)'s values. In addition, The distinguish difference is that this model leads flexible application in planning level by defining the capacity as stochastic distribution. In detail, this model could prevent a disutility to add a lane for only one excess demand in a road planning level.

Anion Distribution and Correlation Analysis by Fountain Type in Urban (도심지내 분수유형별 음이온 분포 및 상관성 분석)

  • Kim, Jeong-Ho;Park, Seung-Hwan;Kim, Won-Tae;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1599-1610
    • /
    • 2013
  • In order to verify the healing effect in the variety of effects according to fountain type, anion which is the representatives factor of healing, as the center of case studies which in Gwanghwamun(Ground fountain), Cheonggyecheon(Waterfall) and Myeongdong(Formative fountain). According to fountain type, the anion distribution as follow, figures typically$ 15,721{\pm}419ea/cm^3$, Formative fountain $40,190{\pm}788ea/cm^3$, Waterfall $4.480{\pm}290ea/cm^3$ and ground fountain $2.492{\pm}180ea/cm^3$. It is usually exceed to the distribution in natural green, which is $1070{\sim}2100ea/cm^3$. The interrelation between air temperature, relative humidity, wind speed and relative humidity, and wind speed is that, the relative humidity is directly proportional to wind speed and inversely proportional to temperature. As the temperature goes up, the distribution of anion goes down. And as the wind speed and relative humidity goes up, the distribution of anion decrease sharply. The result of interrelation between fountain type and the anion distribution is that, the distance of water falling is directly proportional to the anion distribution in the formative fountain and inversely proportional in the ground fountain. And the distribution of anion is largest in formative fountain. The distribution of anion in ground fountain is lower than in formative fountain, but it is far more than in natural greenery. And as the distance from fountain increase, the distribution of anion goes down.

A Study for Distribution Methods Between Superelevation and Side Friction Factor Reflecting Ergonomic Characteristics by Increasing Design Speed (설계속도 상향에 따른 인간공학적 특성을 반영한 편경사와 횡방향마찰계수 분배방법에 관한 연구)

  • Jeong, Seungwon;Kim, Sangyoup;Choi, Jaisung;Kim, Hongjin;Jang, Taeyoun
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.103-115
    • /
    • 2013
  • PURPOSES: The purpose of this study is to develop a method for distribution between superelevation and side friction factor by increasing design speed. METHODS: First of all, a method for distribution between superelevation and side friction factor and a theory for the functional formula of side friction factor in compliance with horizontal radius applied in South Korea and the United States are considered. Especially, design speed of 140km/h and numerical value of design elements are applied to the theory for the functional formula of side friction factor in AASHTO's methods. Also, the anxiety EEG upon running speed is measured to reflect ergonomic characteristics through field experiments at seven curve sections of the West Coast Freeway, and this data is applied to graph for the functional formula of side friction factor. RESULTS : Matching side friction factor against the anxiety EEG, the results that a critical points of driver's anxiety EEG sharply increase locate under existing parabola are figured out. CONCLUSIONS : Therefore, we could get a new type of the functional formula that driver's driving comfortability is guaranteed if the existing the functional formula of side friction factor goes down under boundary of the critical points of the anxiety EEG.

The Stress Distribution Characteristics of HSK Tooling System According to Spindle Speed (고속가공기용 HSK 툴링시스템의 주축회전속도에 따른 응력분포특성)

  • Ku, Min-Su;Kim, Jeong-Suk;Kang, Ik-Soo;Park, Jin-Hyo;Lee, Jong-Hwan;Kim, Ki-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.852-858
    • /
    • 2010
  • Recently, the high-tech industries, such as aerospace industry, auto industry, and electronics industry, are growing up considerably. Because of that, high machining accuracy and productivity of precision parts have been required. The tooling system is important part in the machining center. HSK tooling system is more suitable than BT tooling system for that of high speed machining center. It is because static stiffness and machining accuracy of HSK tooling system are higher than those of BT tooling system. In this paper, stress distribution characteristics of the HSK tooling System is analyzed according to the spindle speed. In order that, the mechanism and the force amplification principle of HSK tooling system are analyzed. The HSK tooling system is modelled by using a 3D modeling/design program. Then stress distribution characteristics of HSK tooling system are analyzed according to spindle speed by using the finite element analysis.

Evaluation of wind loads and the potential of Turkey's south west region by using log-normal and gamma distributions

  • Ozkan, Ramazan;Sen, Faruk;Balli, Serkan
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.299-309
    • /
    • 2020
  • In this study, wind data such as speeds, loads and potential of Muğla which is located in the southwest of Turkey were statistically analyzed. The wind data which consists of hourly wind speed between 2010 and 2013 years, was measured at the 10-meters height in four different ground stations (Datça, Fethiye, Marmaris, Köyceğiz). These stations are operated by The Turkish State Meteorological Service (T.S.M.S). Furthermore, wind data was analyzed by using Log-Normal and Gamma distributions, since these distributions fit better than Weibull, Normal, Exponential and Logistic distributions. Root Mean Squared Error (RMSE) and the coefficients of the goodness of fit (R2) were also determined by using statistical analysis. According to the results, extreme wind speed in the research area was 33 m/s at the Datça station. The effective wind load at this speed is 0.68 kN/㎡. The highest mean power densities for Datça, Fethiye, Marmaris and Köyceğiz were found to be 46.2, 1.6, 6.5 and 2.2 W/㎡, respectively. Also, although Log-normal distribution exhibited a good performance i.e., lower AD (Anderson - Darling statistic (AD) values) values, Gamma distribution was found more suitable in the estimation of wind speed and power of the region.

Analysis of spraying performance of agricultural drones according to flight conditions

  • Dae-Hyun Lee;Baek-Gyeom Seong;Seung-Woo Kang;Soo-Hyun Cho;Xiongzhe Han;Yeongho Kang;Chun-Gu Lee;Seung-Hwa Yu
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.427-435
    • /
    • 2023
  • This study was conducted to evaluate the spraying performance according to the flight conditions of agricultural drones for the development of a variable control system. The analyzed flight conditions comprised six factors: spraying direction, flight speed, altitude, wind speed, wind direction, and rotor rotational speed. The ratio of the area sprayed on the water-sensitive paper was used as the coverage, and the distribution and amount of the coverage were evaluated. The coverage distribution based on the distance from the drone was used to evaluate a spray pattern, and the distribution was expressed as a Gaussian function approximation. In addition, the probability distribution based on coverage was expressed as the cumulative probability via Gamma function approximation to analyze the spraying efficiency in the target area. The results showed that the averaged coverage decreased significantly as the flight speed and wind speed increased, and the wind direction changed the spray pattern without a coverage decrease. This study contributes to the development of a control technique for the precision control system of agricultural drones.

A Study on 3 Shaft Hydromechanical Transmission Design Considering Power and Speed Characteristics (동력특성과 속도비를 고려한 3축 정유압 기계식 변속기의 설계 연구)

  • Sung, Duk-Hwan;Kim, Hyun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2615-2623
    • /
    • 2002
  • In this paper, a systematic design approach for a three shaft hydromechanical transmission(HMT) system is proposed by considering the power characteristics and speed ratio range. Using network analysis, possible configurations of the 3 shaft HMT are analyzed and it is found that the influence of HSU stroke on the power distribution of the HMT can be investigated by the network analysis. In addition, design methods are presented from the viewpoint of (1) power distribution and (2) speed ratio range. From the power distribution and the speed ratio range, a HMT configuration can be constructed, which minimizes the power circulation and provides the desired speed ranges. Based on the 3 shaft HMT analyses and the proposed design approach, a 3 shaft HMT is designed which provides 4 speeds in forward and 1 speed in reverse while keeping the power circulation less than 150% of the input power. It is expected that the design method suggested in this study can be used in a systematic design of the 3 shaft HMT.