• 제목/요약/키워드: speech feature parameters

검색결과 130건 처리시간 0.024초

강인한 음성 인식 시스템을 사용한 감정 인식 (Emotion Recognition using Robust Speech Recognition System)

  • 김원구
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.586-591
    • /
    • 2008
  • 본 논문은 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템에 관하여 연구하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템을 구현하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종감정 인식을 수행한다. 실험 결과에서 강인한 음성 인식 시스템은 음성 파라메터로 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 HMM 기반의 화자독립 단어 인식기를 사용하였다. 이러한 음성 인식기와 결합된 감정 인식을 수행한 결과 감정 인식기만을 사용한 경우보다 좋은 성능을 나타내었다.

음성 에너지 분포 처리와 에너지 파라미터를 융합한 음성 인식 성능 향상 (Voice Recognition Performance Improvement using a convergence of Voice Energy Distribution Process and Parameter)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제13권10호
    • /
    • pp.313-318
    • /
    • 2015
  • 전통적인 음성 향상 방법은 잘못된 잡음의 추정에 따라 남아있는 잡음이 발생하여 음성 스펙트럼을 왜곡하거나 음성 프레임을 찾지 못하여 음성 인식 성능을 저하시키는 문제가 발생된다. 본 논문에서는 음성 에너지 분포 처리와 음성 에너지 파라미터를 융합한 음성 검출 방법을 제안하였다. 제안한 방법은 음성 에너지를 최대화시켜 잡음의 영향을 적게 받는 특성을 이용하였다. 또한, 음성 신호의 특징 파라미터 중에서 작은 값을 가지는 로그에너지 특징의 구간에서는 큰 에너지를 가지는 구간에 비해 상대적으로 로그에너지 값을 더 많이 키워서 잡음이 포함한 음성신호의 로그에너지 특징의 크기와 비슷하게 하여 훈련과 인식 환경의 불일치를 융합으로 인해 줄여준다. 인식 실험 결과 기존 방법에 비해 향상된 인식 성능을 확인할 수 있었으며, car 잡음 환경의 음성 구간 적중률은 낮은 SNR구간인 0dB과 5dB에서는 97.1%와 97.3%의 정확도를 보였으며, 높은 SNR구간인 10dB와 15dB에서는 98.3%, 98.6%의 정확도를 보였다.

PCA-optimized 필터뱅크 기반의 MFCC 특징파라미터 추출 및 한국어 4연숫자 전화음성에 대한 인식실험 (Extraction of MFCC feature parameters based on the PCA-optimized filter bank and Korean connected 4-digit telephone speech recognition)

  • 정성윤;김민성;손종목;배건성
    • 대한전자공학회논문지SP
    • /
    • 제41권6호
    • /
    • pp.279-283
    • /
    • 2004
  • 음성신호의 스펙트럼으로부터 MFCC를 추출할 때, 일반적으로 필터뱅크의 처리과정에서 삼각형 형태의 필터를 사용한다. 그러나 더 나은 인식성능을 위해, 훈련 음성데이터의 스펙트럼에 PCA를 적용하여 필터뱅크의 필터형태를 최적화하는 PCA-optimized 필터뱅크 방법이 Lee et al. 에 의해 제안되었다. 본 논문에서는 대용량의 4연숫자 전화음성 DB를 사용하여PCA-optimized 필터뱅크 기반의 MFCC 특징파라미터를 추출하고 인식실험을 수행한 후, 기존의 삼각형 형태의 필터를 사용하는 MFCC와 각 대역별 로그에너지로 가중시켜서 얻어지는 MFCC와의 인식성능을 비교하였다. 실험결과, PCA-optimized 필터뱅크 기반의 MFCC 특징파라미터가 기존의 삼각형 형태의 필터뱅크 기반 MFCC에 비해 조금 향상된 인식률을 나타내었지만, 각 대역별 로그에너지로 가중치를 주어 얻어지는 MFCC보다는 인식률이 떨어졌다.

Implementation of Speech Recognition System Using JAVA Applet

  • Park, Seungho;Park, Kwangkook;Kim, Kyungnam;Kim, Jingyoung;Kim, Kijung
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.257-259
    • /
    • 2000
  • In this paper, a word-unit recognition is performed to implement a speech recognition system over the web, using JAVA Applet and continuous distributed HMM. The system based on Client/server model is designed. A client computer processes speech with Applet, and then transmits feature parameters to the server computer though the Internet. The speech recognition system in the server computer transmits the result applied by the forward algorithm to the client computer and the result is displayed in the client computer by text.

  • PDF

한국인을 위한 영어 말하기 시험의 컴퓨터 기반 유창성 평가 (Computer-Based Fluency Evaluation of English Speaking Tests for Koreans)

  • 장병용;권오욱
    • 말소리와 음성과학
    • /
    • 제6권2호
    • /
    • pp.9-20
    • /
    • 2014
  • In this paper, we propose an automatic fluency evaluation algorithm for English speaking tests. In the proposed algorithm, acoustic features are extracted from an input spoken utterance and then fluency score is computed by using support vector regression (SVR). We estimate the parameters of feature modeling and SVR using the speech signals and the corresponding scores by human raters. From the correlation analysis results, it is shown that speech rate, articulation rate, and mean length of runs are best for fluency evaluation. Experimental results show that the correlation between the human score and the SVR score is 0.87 for 3 speaking tests, which suggests the possibility of the proposed algorithm as a secondary fluency evaluation tool.

MFCC를 이용한 GMM 기반의 음성/혼합 신호 분류 (Speech/Mixed Content Signal Classification Based on GMM Using MFCC)

  • 김지은;이인성
    • 전자공학회논문지
    • /
    • 제50권2호
    • /
    • pp.185-192
    • /
    • 2013
  • 본 논문에서는 MFCC를 이용한 GMM 기반의 음성과 혼합 신호 분류 알고리즘을 MPEG의 표준 코덱인 USAC에 적용하였다. 효과적인 패턴 인식을 위해 GMM을 이용하였고, EM알고리즘을 사용하여 최적의 GMM 파라미터를 추출하였다. 제안하는 분류 알고리즘은 두 가지 중요한 부분으로 나뉜다. 첫째는 GMM을 통해 최적의 파라미터를 추출하는 것 이고, 두 번째는 MFCC 값을 이용한 패턴인식을 통해 음성/혼합 신호를 분류하였다. 제안된 알고리즘의 성능을 평가한 결과 MFCC를 이용한 GMM 기반의 제안된 방법이 기존 USAC의 방법보다 우수한 음성/혼합 신호 분류 성능을 보였다.

직교인자의 동적 특성을 이용한 화자인식 (Speaker Recognition Using Dynamic Time Variation fo Orthogonal Parameters)

  • 배철수
    • 한국통신학회논문지
    • /
    • 제17권9호
    • /
    • pp.993-1000
    • /
    • 1992
  • 음성신호의 분석으로부터 유도되는 직교인자는 화자의 개인성을 많이 포함하고 있으므로, 최근 많은 연구자들이 이것을 이용한 통계적 처리방법으로 화자인식을 수행하여 좋은 화자인식율을 얻고 있다. 그러나 이러한 방법들은 아직 음성의 발성속도나 시간적 동특성으로 인해서 발생하는 문제점을 갖고 있다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해서 음성분석의 한 방법인 Karhunen-Loeve 직교 변환에 의해서 추출한 직교인자를 화자인식에 이용하는 방법에 DTW법을 결합하는 두가지 기법을 제안하였다. 첫째는 직교인자를 특징벡터로 하여 DTW법을 적용하고, 둘째는 직교인자를 최적경로에 이용하는 기법이다. 이들 두 기법에 의한 화자인식 결과와 직교인자의 통계적 처리에 의한 종래의 화자인식방법의 결과를 비교하였다. 사용된 직교인자는 음성신호에서 선형예측계수와 부분자기상관계수를 각각 추출하여 위의 화자인식방법에 각각 적용하였다. 이를 실험한 결과, 선형예측계수로 부터 얻은 직교인자를 최적경로를 이용한 기법에 적용하는 경우 88.6%의 가장 높은 인식율을 얻었다.

  • PDF

분산 음성인식 시스템의 성능향상을 위한 음소 빈도 비율에 기반한 VQ 코드북 설계 (A VQ Codebook Design Based on Phonetic Distribution for Distributed Speech Recognition)

  • 오유리;윤재삼;이길호;김홍국;류창선;구명완
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2006년도 춘계 학술대회 발표논문집
    • /
    • pp.37-40
    • /
    • 2006
  • In this paper, we propose a VQ codebook design of speech recognition feature parameters in order to improve the performance of a distributed speech recognition system. For the context-dependent HMMs, a VQ codebook should be correlated with phonetic distributions in the training data for HMMs. Thus, we focus on a selection method of training data based on phonetic distribution instead of using all the training data for an efficient VQ codebook design. From the speech recognition experiments using the Aurora 4 database, the distributed speech recognition system employing a VQ codebook designed by the proposed method reduced the word error rate (WER) by 10% when compared with that using a VQ codebook trained with the whole training data.

  • PDF

DSP를 이용한 자동차 소음에 강인한 음성인식기 구현 (Implementation of a Robust Speech Recognizer in Noisy Car Environment Using a DSP)

  • 정익주
    • 음성과학
    • /
    • 제15권2호
    • /
    • pp.67-77
    • /
    • 2008
  • In this paper, we implemented a robust speech recognizer using the TMS320VC33 DSP. For this implementation, we had built speech and noise database suitable for the recognizer using spectral subtraction method for noise removal. The recognizer has an explicit structure in aspect that a speech signal is enhanced through spectral subtraction before endpoints detection and feature extraction. This helps make the operation of the recognizer clear and build HMM models which give minimum model-mismatch. Since the recognizer was developed for the purpose of controlling car facilities and voice dialing, it has two recognition engines, speaker independent one for controlling car facilities and speaker dependent one for voice dialing. We adopted a conventional DTW algorithm for the latter and a continuous HMM for the former. Though various off-line recognition test, we made a selection of optimal conditions of several recognition parameters for a resource-limited embedded recognizer, which led to HMM models of the three mixtures per state. The car noise added speech database is enhanced using spectral subtraction before HMM parameter estimation for reducing model-mismatch caused by nonlinear distortion from spectral subtraction. The hardware module developed includes a microcontroller for host interface which processes the protocol between the DSP and a host.

  • PDF