• Title/Summary/Keyword: spectrum analysis program

Search Result 174, Processing Time 0.032 seconds

Efficient Seismic Analysis of Bridge by Single Mode Spectrum Analysis Method (단일모드 스펙트럼해석법에 의한 교량의 효율적 내진해석)

  • 박윤봉;국무성;유승운;김선훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.487-494
    • /
    • 2003
  • Recently it is used seismic analysis like single mode spectrum analysis, multi mode spectrum analysis and time history analysis in Korea. Because bridges are not special form of them but regular and simple form of them in our country, we must develope seismic analysis program of bridge based on single nude spectrum analysis. The program developed by this study reduces a Quantity and a time of calculation compared to SAP90 and gives accurate answers without errors. In the case of commercial program if we look for seismic load(P/sub e/(x)), we must increase the number of node and the larger the number of node the more a quantity and a time of calculation. But this program is exactly solved with basic node compared to commercial program.

  • PDF

Development of Response Spectrum Generation Program for Seismic Analysis of the Nuclear Equipment (원자력기기 내진해석응답스펙트럼 생성프로그램 개발)

  • Byun, Hoon-Seok;Kim, Yu-Chull;Lee, Joon-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.755-762
    • /
    • 2004
  • In our country, when the replacement for individual components of equipment in nuclear power plants is required, establishment of individual criteria i.e. Required Response Spectra(RRS) of seismic test/analysis for the component is very difficult because of the absence of Test Response Spectra(TRS) for the individual component to be replaced, from the existing qualification documents. In this case, it is required to perform the structural analysis for the nuclear equipment including the components to be replaced. After the structural analysis, Analysis Response Spectra(ARS) at the point of the component shall be generated and used for seismic test of the component. However, as of today, no standard program authorized for the response spectra generation by using the structural analysis exists in korea. Because of above reason, the STAR-Egs computer program was developed by using the method which calculates directly the expected response spectrum(frequency vs. acceleration type) of the selected points in the nuclear equipment with input spectrum(Required Response Spectra, RRS), based on the dynamic characteristics of the Finite Element(FE) model that is equivalent to the nuclear equipment. The STAR-Egs controls ANSYS/I-DEAS commercial software and automatically extract modal parameters of the FE model. The STAR-Egs calculates response spectrum using the established algorithm based on the extracted modal parameters, too. Reliance on the calculation result of the STAR-Egs was verified through comparison output with the result of MATLAB commercial software based on the identical algorithm. Moreover, actual seismic testing was performed as per IEEE344-1987 for the purpose of program verification by comparison of the FE analysis results.

  • PDF

Development of GUI Program for Analyzing Directional Spectrum Waves (방향 스펙트럼 파 해석을 위한 GUI 프로그램 개발)

  • 이진호;최재웅;강윤태;하문근
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • GUI program for analyzing directional spectrum waves is introduced in this paper Basically, MLM (Maximum Likelihood Method) was used for this program which was additionally consisted of performing spectral and time domain analysis for two dimensional irregular waves. Moreover, the directionality of directional spectrum waves generated by single summation and double summation method was investigated based on MLM. The directionality from each summation method has good agreement compared with that of target wave spreading function in the case of single wide directional spectrum waves. In addition to this, the resolution of directionality in double summation method was investigated as introducing coherence function between each wave component

A Study on the Seisemic Performance Method for R.C bridge by using the Finite Element Analysis Program (유한요소해석 프로그램를 이용한 R.C교각의 내진성능 평가 기법 연구)

  • Park, Yeoun-Soo;Choi, Sun-Min;Lee, Byung-Geun;Seo, Byung-Chul;Park, Sun-Joon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.301-306
    • /
    • 2008
  • The present seismic analysis of Road-Bridge Design Standard is on a basis of load-vased analysis which lets structures have the strength over load. In this study, the capacity spectrum method, a kind of displacement based method, which is evaluated by displacement of structure, is presented as an alternative to the analysis method based on load. Seismic capacity is performed about the existing reinforced concrete pier which has already secured seismic design by capacity spectrum method. As a result, capacity spectrum method could realistically evaluate the non-elastic behavior of structures easilly and quickly and the displacement of structures for variable ground motion level. And it could efficiently apply to an evaluation of seismic capacity about the existing structures and a verification of design for capacity target of the structure. We propose the seisemic performance method by using the Finite Element Analysis Program.

  • PDF

Database of virtual spectrum of artificial radionuclides for education and training in in-situ gamma spectrometry

  • Yoomi Choi;Young-Yong Ji;Sungyeop Joung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.190-200
    • /
    • 2023
  • As the field of application of in-situ gamma spectroscopy is diversified, proficiency is required for consistent and accurate analysis. In this study, a program was developed to virtually create gamma energy spectra of artificial nuclides, which are difficult to obtain through actual measurements, for training. The virtual spectrum was created by synthesizing the spectra of the background radiation obtained through actual measurement and the theoretical spectra of the artificial radionuclides obtained by a Monte Carlo simulation. Since the theoretical spectrum can only be obtained for a given geometrical structure, representative major geometries for in-situ measurement (ground surface, concrete wall, radioactive waste drum) and the detectors (HPGe, NaI(Tl), LaBr3(Ce)) were predetermined. Generated virtual spectra were verified in terms of validity and harmonization by gamma spectrometry and energy calibration. As a result, it was confirmed that the energy calibration results including the peaks of the measured spectrum and the peaks of the theoretical spectrum showed differences of less than 1 keV from the actual energies, and that the calculated radioactivity showed a difference within 20% from the actual inputted radioactivity. The verified data were assembled into a database and a program that can generate a virtual spectrum of desired condition was developed.

In-Cabinet Response Spectrum Generation Using Frequency Domain Analysis Method (진동수영역해석법을 이용한 캐비닛내부응답스펙트럼 생성 기법)

  • Cho, Sung Gook;So, Gihwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • Seismic qualification of instruments and devices mounted on electrical cabinets in a nuclear power plant is performed in this study by means of the in-cabinet response spectrum (ICRS). A simple method and two rigorous methods are proposed in the EPRI NP-7146-SL guidelines for generating the ICRS. The simple method of EPRI can give unrealistic spectra that are excessively conservative in many cases. In the past, the time domain analysis (TDA) methods have been mostly used to analyze a structure. However, the TDA requires the generation of an artificial earthquake input motion compatible to the target response spectrum. The process of generating an artificial earthquake may involve a great deal of uncertainty. In addition, many time history analyses should be performed to increase the accuracy of the results. This study developed a numerical analysis program for generating the ICRS by frequency domain analysis (FDA) method. The developed program was validated by the numerical study. The ICRS calculated by FDA thoroughly matched with those obtained from TDA. This study then confirms that the method it proposes can simply and efficiently generate the ICRS compared to the time domain method.

Nondestructive Measurement of Sugar.Acid Contents in Fruits Using Spectral Reflectance (분광 반사 특성을 이용한 주요 과실의 비파괴 당.산도 측정)

  • 노상하;김우기;이종환
    • Journal of Biosystems Engineering
    • /
    • v.22 no.2
    • /
    • pp.247-255
    • /
    • 1997
  • This study was conducted to develop regression models predicting sugar and acid contents in intact fruits nondestructively by using the second derivative of absorbance spectrum measured with a spectrophotometer wavelength range of 400nm to 2, 400nm. The correlation analysis was made in wavelength range of 600nm to 1, 100nm and 600nm to 2, 400nm respectively, in order to examine the feasibility of using a real time spectrophotometer, which covers the former range, in predicting sugar and acid contents. The second derivative data of the spectrum were obtained by varying smoothing size and derivative size of the original absorbance spectrum. SAS statistical package program was used for the regression analysis. The sugar contents of Fuji apple, Shingo pear md Yumyung peach could be predicted with SEPs of 0.40, 1.17 and 0.77 respectively, in the spectrum range of 600 to 1, 100nm. The highest correlation coefficient of the titratible acidity of apple was -0.45 at 2, 346nm and regression models indicated determination coefficient less than 0.47.

  • PDF

Pseudo 3D FEM analysis for wave passage effect on the response spectrum of a building built on soft soil layer

  • Kim, Yong-Seok
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1241-1254
    • /
    • 2015
  • Spatially variable ground motions can be significant on the seismic response of a structure due to the incoherency of the incident wave. Incoherence of the incident wave is resulted from wave passage and wave scattering. In this study, wave passage effect on the response spectrum of a building structure built on a soft soil layer was investigated utilizing a finite element program of P3DASS (Pseudo 3-dimensional Dynamic Analysis of a Structure-soil System). P3DASS was developed for the axisymmetric problem in the cylindrical coordinate, but it is modified to apply anti-symmetric input earthquake motions. Study results were compared with the experimental results to verify the reliability of P3DASS program for the shear wave velocity of 250 m/s and the apparent shear wave velocities of 2000-3500 m/s. Studied transfer functions of input motions between surface mat foundation and free ground surface were well-agreed to the experimental ones with a small difference in all frequency ranges, showing some reductions of the transfer function in the high frequency range. Also wave passage effect on the elastic response spectrum reduced the elastic seismic response of a SDOF system somewhat in the short period range.

The use of spectral analysis in choosing time series and forecasting models (시계열 및 예측모델 선택과정에서 스펙트럼의 이용)

  • Jeon, Deok-Bin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 1988
  • A spectrum analysis method is presented with an example as an aid to Box and Jerkins' model identification procedure, where the theoretical spectrum of ARMA model and its confidence intervals derived by chi-square distribution are compared. An APL (A Programming Language) program for the method is developed for the 16-bit personal computer.

  • PDF

Development of a GC-MS Automatic Analysis Program to Provide Information on Exposure to Chemical Substances (화학물질 노출정보 제공을 위한 GC-MS 분석자동화 프로그램 개발)

  • Park, Seung-Hyun;Park, Hae Dong;Jang, Miyeon;Ro, Jiwon;Cho, Hyounmin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • Objective: The purpose of this study was to contribute to the prevention of occupational diseases through the development of an automatic analysis program for evaluating workers' exposure to hazardous chemical substances. Methods: The authors selected chemical substances that caused occupational disease in Korea and chemical substances that are frequently used in industrial sites as target substances for a GC-MS automatic analysis program. The target substances are organic compounds which can be measured by a passive sampler. The automatic analysis program was studied using various raw data obtained from GC-MS analysis for the target substances. Results: A total of 48 organic compounds that can be measured with a passive sampler were selected as target substances for the GC-MS automatic analysis program. The selected compounds included substances that caused occupational disease, substances related to C1 and D1 in special health examinations, and substances for which work environment measurements have been frequently conducted. The GC-MS automatic analysis program was developed by combining information mainly on retention time and mass spectrum. The GC-MS automatic analysis program is designed to analyze unknown samples by comparing the mass spectrum and retention time of the samples to those of reference materials. To evaluate the stability of the program, samples at about the 30-50% level of OELs were prepared and analyzed with the GC-MS automatic analysis program, resulting in stable results for all 48 organic compounds. Conclusion: An automatic analysis program for a total of 48 organic compounds was developed using a GC-MS system that can analyze organic compounds. Unknown samples that contain the 48 organic compounds can be automatically analyzed by the developed program. It is anticipated that it can contribute to the prevention of occupational diseases through an GC-MS automatic analysis program that can quickly provide workers with information on exposure to chemical substances.