• Title/Summary/Keyword: spectroradiometer

Search Result 278, Processing Time 0.03 seconds

Effect of infection control barrier thickness on light curing units (감염 조절용 차단막의 두께가 광중합기의 중합광에 미치는 영향)

  • Chang, Hoon-Sang;Lee, Seok-Ryun;Hong, Sung-Ok;Ryu, Hyun-Wook;Song, Chang-Kyu;Min, Kyung-San
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.5
    • /
    • pp.368-373
    • /
    • 2010
  • Objectives: This study investigated the effect of infection control barrier thickness on power density, wavelength, and light diffusion of light curing units. Materials and Methods: Infection control barrier (Cleanwrap) in one-fold, two-fold, four-fold, and eightfold, and a halogen light curing unit (Optilux 360) and a light emitting diode (LED) light curing unit (Elipar FreeLight 2) were used in this study. Power density of light curing units with infection control barriers covering the fiberoptic bundle was measured with a hand held dental radiometer (Cure Rite). Wavelength of light curing units fixed on a custom made optical breadboard was measured with a portable spectroradiometer (CS-1000). Light diffusion of light curing units was photographed with DSLR (Nikon D70s) as above. Results: Power density decreased significantly as the layer thickness of the infection control barrier increased, except the one-fold and two-fold in halogen light curing unit. Especially, when the barrier was four-fold and more in the halogen light curing unit, the decrease of power density was more prominent. The wavelength of light curing units was not affected by the barriers and almost no change was detected in the peak wavelength. Light diffusion of LED light curing unit was not affected by barriers, however, halogen light curing unit showed decrease in light diffusion angle when the barrier was four-fold and statistically different decrease when the barrier was eight-fold (p < 0.05). Conclusions: It could be assumed that the infection control barriers should be used as two-fold rather than one-fold to prevent tearing of the barriers and subsequent cross contamination between the patients.

Vegetation Spatial Distribution Analysis of Tundra-Taiga Boundary Using MODIS LAI Data (MODIS LAI 데이터를 이용한 툰드라-타이가 경계의 식생 공간분포분석)

  • Lee, Min-Ji;Han, Kyung-Soo
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.27-36
    • /
    • 2010
  • This study observed distribution of vegetation to confirm change of tundra-taiga boundary. Tundra-taiga boundary is used to observe the transfer of vegetation pattern because it is very sensitive to human activity, natural disturbances and climate change. The circumpolar tundra-taiga boundary could observe reaction about some change. Reaction and confirmation about climate change were definite than other place. This study used Leaf Area Index(LAI) 8-Day data in August from 2000 to 2009 that acquire from Terra satellite MODerate resolution Imaging Spectroradiometer(MODIS) sensor and used K$\"{o}$ppen Climate Map, Global Land Cover 2000 for reference data. This study conducted analysis of spatial distribution in low density vegetated areas and inter-annual / zonal analysis for using the long period data of LAI. Change of LAI was confirmed by analysis based on boundary value of LAI in study area. Development of vegetation could be confirmed by area of grown vegetation($730,325km^2$) than area of reduced vegetation ($22,372km^2$) in tundra climate. Also, area was increased with the latitude $64^{\circ}$ N~$66^{\circ}$ N as the center and around the latitude $62^{\circ}$ N through area analysis by latitude. Vegetation of tundra-taiga boundary was general increase from 2000 to 2009. While area of reduced vegetation was a little, area of vegetation growth and development was increased significantly.

Mapping Technique for Heavy Snowfall Distribution Using Terra MODIS Images and Ground Measured Snowfall Data (Terra MODIS 영상과 지상 적설심 자료를 이용한 적설분포도 구축기법 연구)

  • Kim, Saet-Byul;Shin, Hyung-Jin;Lee, Ji-Wan;Yu, Young-Seok;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.33-43
    • /
    • 2011
  • This study is to make snowfall distribution map for the 4 heavy snowfall events of January 2001, March of 2004, December of 2005 and January of 2010, and compare the results for three cases of construction methods. The cases are to generate the map by applying IDW(Inverse Distance Weighting) interpolation to 76 ground measured snowfall point data (Snow Depth Map; SDM), mask out the SDM with the MODIS snow cover area (MODIS SCA) of Terra MODIS (MODerate resolution Imaging Spectroradiometer) (SDM+MODIS SCA; SDM_M), and consider the snowdepth lapse rate of snowfall by elevation (Digital Elevation Model; DEM) to the second case (SDM_M+DEM; SDM_MD). By applying the MODIS SCA, the SCA of 4 events was 62.9%, 44.1%, 52.0%, and 69.0% for the area of South Korea. For the average snow depth, the SDM_M decreased 0.9cm, 1.9cm, 0.8cm, and 1.5cm compared to SDM and the SDM_MD increased 1.3cm, 0.9cm, 0.4cm, and 1.2cm respectively.

A feasibility modeling of potential dam site for hydroelectricity based on ASTGTM DEM data (ASTGTM 전지구 DEM 기반의 수력발전댐 적지분석 사전모델링)

  • Jang, Wonjin;Lee, Yonggwan;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.545-555
    • /
    • 2020
  • A feasibility modeling for potential hydroelectric dam site selection was suggested using 1 sec ASTGTM (ASTER Global Digital Elevation Model) and Terra/Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) derived land use (MCD12Q1) data. The modeling includes DEM pre-processing of peak, sink, and flat, river network generation, watershed delineation and segmentation, terrain analysis of stream cross section and reservoir storage, and estimation of submerged area for compensation. The modeling algorithms were developed using Python and as an open source GIS. When a user-defined stream point is selected, the model evaluates potential hydroelectric head, reservoir surface area and storage capacity curve, watershed time of concentration from DEM, and compensation area from land use data. The model was tested for 4 locations of already constructed Buhang, BohyunMountain, Sungdeok, and Yeongju dams. The modeling results obtained maximum possible heads of 37.0, 67.0, 73.0, 42.0 m, surface areas of 1.81, 2.4, 2.8, 8.8 ㎢, storages of 35.9, 68.0, 91.3, 168.3×106 ㎥ respectively. BohyunMountain and Sungdeok show validity but in case of Buhang and Yeongju dams have maximum head errors. These errors came from the stream generation error due to ASTGTM. So, wrong dam watershed boundary limit the head. This study showed a possibility to estimate potential hydroelectric dam sites before field investigation especially for overseas project.

Investigation Into Reflectance Characteristics of Trees Infected by Pine Wilt Disease (소나무재선충병 감염목의 분광반사 특성 구명)

  • Kim, So-Ra;Lee, Woo-Kyun;Nam, Kijun;Song, Yongho;Yu, Hangnan;Kim, Moon-Il;Lee, Jong-Yeol;Lee, Seung-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.499-505
    • /
    • 2013
  • Pine wilt disease has known as a serious forest disease in East Asia such as Japan, Korea and China. Fumigation and burning are considered as best way to treat infected tree at early detection. For investigate spectral reflectance characteristics of infected trees, periodic measurement has been done in both infected and non-infected trees. Infected and non-infected trees' reflectance (400 nm~2,500 nm wavelength) are detected from June to October with GER3700 spectrometer. Noise of reflectance data was corrected using cubic spline interpolation method. Reflectance was changed in most of infected trees with ranges Red (600 nm~700 nm) and Middle Infrared (1,400 nm~1,500 nm) within two months after injected by Pine Wood nematode (PWN), but there was no differences in non-infected trees. Infected and non-infected trees were compared statistically in each period. As a result, we found that a statistically significant difference was occurred at Red and Middle Infrared (MIR) 2 months after injection (p<0.05), however, no significant difference in near infrared (p>0.05). Therefore, the early detection of infested pine trees by PWN may possible through detecting the change of spectral reflectance at red and MIR.

Derivations of Surface Solar Radiation from Polar Orbiting Satellite Observations (극궤도 위성 관측을 이용한 지표면에서의 태양 복사에너지 도출)

  • Kim, Dong-Cheol;Jeong, Myeong-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.201-220
    • /
    • 2016
  • In this study, the net solar radiation fluxes at the surface are retrieved by updating an existing algorithm to be applicable for MODerate resolution Imaging Spectroradiometer (MODIS) observations, in which linear relationships between the solar radiation reflected from the top of atmosphere and the net surface solar radiation are employed. The results of this study have been evaluated through intercomparison with existing Clouds and the Earth's Radiant Energy System (CERES) data products and ground-based data from pyranometers at Gangneung-Wonju National University (GWNU) and the Southern Great Plains (SGP) of observatory of Atmospheric Radiation Measurement (ARM) site. Prior to the comparison of the surface radiation energy in relation to the energy balance of the earth, the radiation energy of the upper part of the atmosphere was compared. As a result, the coefficient of determination was over 0.9, showing considerable similarity, but the Root-Mean-Square-Deviation (RMSD) value was somewhat different, and the downward and net solar-radiation energy also showed similar results. The surface solar radiation data measured from pyranometers at Gangneung-Wonju National University (GWNU) and Atmospheric Radiation Measurement (ARM) observatory are used to validate the solar radiation data produced in this study. When compared to the GWNU, The results of this study show smaller RMSD values than CERES data, showing slightly better agreements with the surface data. On the other hand, when compared with the data from ARM SGP observatory, the results of this study bear slightly larger RMSD values than those for CERES. The downward and net solar radiation estimated by the algorithm of this study at a high spatial resolution are expected to be very useful in the near future after refinements on the identified problems, especially for those area without ground measurements of solar radiation.

Cloud Detection Using HIMAWARI-8/AHI Based Reflectance Spectral Library Over Ocean (Himawari-8/AHI 기반 반사도 분광 라이브러리를 이용한 해양 구름 탐지)

  • Kwon, Chaeyoung;Seo, Minji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.599-605
    • /
    • 2017
  • Accurate cloud discrimination in satellite images strongly affects accuracy of remotely sensed parameter produced using it. Especially, cloud contaminated pixel over ocean is one of the major error factors such as Sea Surface Temperature (SST), ocean color, and chlorophyll-a retrievals,so accurate cloud detection is essential process and it can lead to understand ocean circulation. However, static threshold method using real-time algorithm such as Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Himawari Imager (AHI) can't fully explained reflectance variability over ocean as a function of relative positions between the sun - sea surface - satellite. In this paper, we assembled a reflectance spectral library as a function of Solar Zenith Angle (SZA) and Viewing Zenith Angle (VZA) from ocean surface reflectance with clear sky condition of Advanced Himawari Imager (AHI) identified by NOAA's cloud products and spectral library is used for applying the Dynamic Time Warping (DTW) to detect cloud pixels. We compared qualitatively between AHI cloud property and our results and it showed that AHI cloud property had general tendency toward overestimation and wrongly detected clear as unknown at high SZA. We validated by visual inspection with coincident imagery and it is generally appropriate.

Estimation of Fire Emissions Using Fire Radiative Power (FRP) Retrieved from Himawari-8 Satellite (히마와리 위성의 산불방사열에너지 자료를 이용한 산불배출가스 추정: 2017년 삼척 및 강릉 산불을 사례로)

  • Kim, Deasun;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.1029-1040
    • /
    • 2017
  • Wildfires release a large amount of greenhouse gases (GHGs) into the atmosphere. Fire radiative power (FRP) data obtained from geostationary satellites can play an important role for tracing the GHGs. This paper describes an estimation of the Himawari-8 FRP and fire emissions for Samcheock and Gangnueng wildfire in 6 May 2017. The FRP estimated using Himawari-8 well represented the temporal variability of the fire intensity, which cannot be captured by MODIS (Moderate Resolution Imaging Spectroradiometer) because of its limited temporal resolution. Fire emissions calculated from the Himwari-8 FRP showed a very similar time-series pattern compared with the AirKorea observations, but 1 to 3 hour's time-lag existed because of the distance between the station and the wildfire location. The estimated emissions were also compared with those of a previous study which analyzed fire damages using high-resolution images. They almost coincided with 12% difference for Samcheock and 2% difference for Gangneung, demonstrating a reliability of the estimation of fire emissions using our Himawari-8 FRP without high-resolution images. This study can be a reference for estimating fire emissions using the current and forthcoming geostationary satellites in East Asia and can contribute to improving accuracy of meteorological products such as AOD (aerosol optical depth).

Assessment of Surface Temperature Mitigation Effects of Wetlands During Heat and Cold Waves Using Daytime and Nighttime MODIS Land Surface Temperature (Terra/Aqua MODIS LST를 이용한 폭염 및 한파기간 동안 습지의 지면온도 완화효과 분석)

  • Chung, Jeehun;Lee, Yonggwan;Kim, Seongjoon
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.123-133
    • /
    • 2019
  • This study analyzed the surface temperature mitigation effect of wetlands during cold waves (below -12℃ from January to February) and heat waves (above 33℃ from July to August) in 2018. We used Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Daytime and Nighttime Land Surface Temperature (LST) product, and the maximum and minimum air temperature observed at 86 stations of Korea Meteorological Administration (KMA). For the cold wave analysis, the LST of Terra MODIS nighttime was the highest at forest area with -12.7℃, followed by upland crop and wetland areas of -12.9℃ and -13.0℃ respectively. The urban area showed the lowest value of -14.4℃. During the heat wave, the urban area was the highest with + 34.6℃ in Aqua MODIS LST daytime. The wetland area was + 33.0℃ showing - 1.6℃ decrease comparing with urban area.

Estimation of nighttime aerosol optical thickness from Suomi-NPP DNB observations over small cities in Korea (Suomi-NPP위성 DNB관측을 이용한 우리나라 소도시에서의 야간 에어로졸 광학두께 추정)

  • Choo, Gyo-Hwang;Jeong, Myeong-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.73-86
    • /
    • 2016
  • In this study, an algorithm to estimate Aerosol Optical Thickness (AOT) over small cities during nighttime has been developed by using the radiance from artificial light sources in small cities measured from Visible Infrared Imaging Radiometer Suite (VIIRS) sensor's Day/Night Band (DNB) aboard the Suomi-National Polar Partnership (Suomi-NPP) satellite. The algorithm is based on Beer's extinction law with the light sources from the artificial lights over small cities. AOT is retrieved for cloud-free pixels over individual cities, and cloud-screening was conducted by using the measurements from M-bands of VIIRS at infrared wavelengths. The retrieved nighttime AOT is compared with the aerosol products from MODerate resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites. As a result, the correlation coefficients over individual cities range from around 0.6 and 0.7 between the retrieved nighttime AOT and MODIS AOT with Root-Mean-Squared Difference (RMSD) ranged from 0.14 to 0.18. In addition, sensitivity tests were conducted for the factors affecting the nighttime AOT to estimate the range of uncertainty in the nighttime AOT retrievals. The results of this study indicate that it is promising to infer AOT using the DNB measaurements over small cities in Korea at night. After further development and refinement in the future, the developed retrieval algorithm is expected to produce nighttime aerosol information which is not operationally available over Korea.