• Title/Summary/Keyword: spectral study

Search Result 2,785, Processing Time 0.029 seconds

A Study of Tasseled Cap Transformation Coefficient for the Geostationary Ocean Color Imager (GOCI) (정지궤도 천리안위성 해양관측센서 GOCI의 Tasseled Cap 변환계수 산출연구)

  • Shin, Ji-Sun;Park, Wook;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.275-292
    • /
    • 2014
  • The objective of this study is to determine Tasseled Cap Transformation (TCT) coefficients for the Geostationary Ocean Color Imager (GOCI). TCT is traditional method of analyzing the characteristics of the land area from multi spectral sensor data. TCT coefficients for a new sensor must be estimated individually because of different sensor characteristics of each sensor. Although the primary objective of the GOCI is for ocean color study, one half of the scene covers land area with typical land observing channels in Visible-Near InfraRed (VNIR). The GOCI has a unique capability to acquire eight scenes per day. This advantage of high temporal resolution can be utilized for detecting daily variation of land surface. The GOCI TCT offers a great potential for application in near-real time analysis and interpretation of land cover characteristics. TCT generally represents information of "Brightness", "Greenness" and "Wetness". However, in the case of the GOCI is not able to provide "Wetness" due to lack of ShortWave InfraRed (SWIR) band. To maximize the utilization of high temporal resolution, "Wetness" should be provided. In order to obtain "Wetness", the linear regression method was used to align the GOCI Principal Component Analysis (PCA) space with the MODIS TCT space. The GOCI TCT coefficients obtained by this method have different values according to observation time due to the characteristics of geostationary earth orbit. To examine these differences, the correlation between the GOCI TCT and the MODIS TCT were compared. As a result, while the GOCI TCT coefficients of "Brightness" and "Greenness" were selected at 4h, the GOCI TCT coefficient of "Wetness" was selected at 2h. To assess the adequacy of the resulting GOCI TCT coefficients, the GOCI TCT data were compared to the MODIS TCT image and several land parameters. The land cover classification of the GOCI TCT image was expressed more precisely than the MODIS TCT image. The distribution of land cover classification of the GOCI TCT space showed meaningful results. Also, "Brightness", "Greenness", and "Wetness" of the GOCI TCT data showed a relatively high correlation with Albedo ($R^2$ = 0.75), Normalized Difference Vegetation Index (NDVI) ($R^2$ = 0.97), and Normalized Difference Moisture Index (NDMI) ($R^2$ = 0.77), respectively. These results indicate the suitability of the GOCI TCT coefficients.

Distribution Characteristics Analysis of Pine Wilt Disease Using Time Series Hyperspectral Aerial Imagery (소나무재선충병 발생시기별 피해목 탐지를 위한 시계열 초분광 항공영상의 활용)

  • Kim, So-Ra;Kim, Eun-Sook;Nam, Youngwoo;Choi, Won Il;Kim, Cheol-Min
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.385-394
    • /
    • 2015
  • Pine wilt disease has greatly damaged pine forests not only in East Asia including South Korea and China, but also in European region. The damage caused by pine wood nematode (Bursaphelenchus xylophilus) is expressed in bundles within stands and rapidly spreading, however, present field survey methods have limitations to detecting damaged trees at regional level. This study extracted the damaged trees by pine wilt disease using time series hyperspectral aerial photographs, and analyzed their distribution characteristics. Hyperspectral aerial photographs of 1 meter spatial resolution were obtained in June, September, and October. Damaged trees by pine wilt disease were extracted using Normalized Difference Vegetation Index (NDVI) and Vegetation Index green (VIgreen) of the September photograph. Among extracted damaged trees, dead trees with leaves and without leaves were classified, and the spectral reflectance values from the photographs obtained in June, September, and October were compared to extract new outbreaks in September and October. Based on the time series dispersion of extracted damaged trees, nearest neighbor analysis was conducted to analyze distribution characteristics of the damaged trees within the region where hyperspectral aerial photographs were acquired. As a result, 2,262 damaged trees were extracted in the study area, and 604 dead trees (dead trees in last year) with leaves in relation to the damaged time and 300 and 101 newly damaged trees in September and October were classified. The result of nearest neighbor analysis using the data shows that aggregated distribution was the dominant pattern both previous and current year in the study area. Also, 80% of the damaged trees in current year were found within 60 m of dead trees in previous year.

Long-term Results of Taking Anti-oxidant Nutritional Supplement in Intermediate Age-related Macular Degeneration (중기 나이관련황반변성 환자에서 항산화영양제 복용 후 장기 관찰 결과)

  • Bang, Seul Ki;Kim, Eung Suk;Kim, Jong Woo;Shin, Jae Pil;Lee, Ji Eun;Yu, Hyeong Gon;Huh, Kuhl;Yu, Seung-Young
    • Journal of The Korean Ophthalmological Society
    • /
    • v.59 no.12
    • /
    • pp.1152-1159
    • /
    • 2018
  • Purpose: We prospectively investigated clinical changes and long-term outcomes after administration of the drugs recommended by the Age-Related Eye Disease Study-2 to patients with intermediate age-related macular degeneration (AMD). Methods: This prospective multicenter study enrolled 79 eyes of 55 patients taking lutein and zeaxanthin. The primary endpoint was contrast sensitivity; this was checked every 12 months for a total of 36 months after treatment commenced. The secondary endpoints were visual acuity, central macular thickness, and drusen volume; the latter two parameters were assessed using spectral domain optical coherence tomography. Results: The mean patient age was $72.46{\pm}7.16years$. Contrast sensitivity gradually improved at both three and six cycles per degree. The corrected visual acuity was $0.13{\pm}0.14logMAR$ and did not change significantly over the 36 months. Neither the central macular thickness nor drusen volume changed significantly. Conclusions: Contrast sensitivity markedly improved after treatment, improving vision and patient satisfaction. Visual acuity, central retinal thickness, and drusen volume did not deteriorate. Therefore, progression of AMD and visual function deterioration were halted.

A Comparison between Multiple Satellite AOD Products Using AERONET Sun Photometer Observations in South Korea: Case Study of MODIS,VIIRS, Himawari-8, and Sentinel-3 (우리나라에서 AERONET 태양광도계 자료를 이용한 다종위성 AOD 산출물 비교평가: MODIS, VIIRS, Himawari-8, Sentinel-3의 사례연구)

  • Kim, Seoyeon;Jeong, Yemin;Youn, Youjeong;Cho, Subin;Kang, Jonggu;Kim, Geunah;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.543-557
    • /
    • 2021
  • Because aerosols have different spectral characteristics according to the size and composition of the particle and to the satellite sensors, a comparative analysis of aerosol products from various satellite sensors is required. In South Korea, however, a comprehensive study for the comparison of various official satellite AOD (Aerosol Optical Depth) products for a long period is not easily found. In this paper, we aimed to assess the performance of the AOD products from MODIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer Suite), Himawari-8, and Sentinel-3 by referring to the AERONET (Aerosol Robotic Network) sun photometer observations for the period between January 2015 and December 2019. Seasonal and geographical characteristics of the accuracy of satellite AOD were also analyzed. The MODIS products, which were accumulated for a long time and optimized by the new MAIAC (Multiangle Implementation of Atmospheric Correction) algorithm, showed the best accuracy (CC=0.836) and were followed by the products from VIIRS and Himawari-8. On the other hand, Sentinel-3 AOD did not appear to have a good quality because it was recently launched and not sufficiently optimized yet, according to ESA (European Space Agency). The AOD of MODIS, VIIRS, and Himawari-8 did not show a significant difference in accuracy according to season and to urban vs. non-urban regions, but the mixed pixel problem was partly found in a few coastal regions. Because AOD is an essential component for atmospheric correction, the result of this study can be a reference to the future work for the atmospheric correction for the Korean CAS (Compact Advanced Satellite) series.

Cross-Calibration of GOCI-II in Near-Infrared Band with GOCI (GOCI를 이용한 GOCI-II 근적외 밴드 교차보정)

  • Eunkyung Lee;Sujung Bae;Jae-Hyun Ahn;Kyeong-Sang Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1553-1563
    • /
    • 2023
  • The Geostationary Ocean Color Imager-II (GOCI-II) is a satellite designed for ocean color observation, covering the Northeast Asian region and the entire disk of the Earth. It commenced operations in 2020, succeeding its predecessor, GOCI, which had been active for the previous decade. In this study, we aimed to enhance the atmospheric correction algorithm, a critical step in producing satellite-based ocean color data, by performing cross-calibration on the GOCI-II near-infrared (NIR) band using the GOCI NIR band. To achieve this, we conducted a cross-calibration study on the top-of-atmosphere (TOA) radiance of the NIR band and derived a vicarious calibration gain for two NIR bands (745 and 865 nm). As a result of applying this gain, the offset of two sensors decreased and the ratio approached 1. It shows that consistency of two sensors was improved. Also, the Rayleigh-corrected reflectance at 745 nm and 865 nm increased by 5.62% and 9.52%, respectively. This alteration had implications for the ratio of Rayleigh-corrected reflectance at these wavelengths, potentially impacting the atmospheric correction results across all spectral bands, particularly during the aerosol reflectance correction process within the atmospheric correction algorithm. Due to the limited overlapping operational period of GOCI and GOCI-II satellites, we only used data from March 2021. Nevertheless, we anticipate further enhancements through ongoing cross-calibration research with other satellites in the future. Additionally, it is essential to apply the vicarious calibration gain derived for the NIR band in this study to perform vicarious calibration for the visible channels and assess its impact on the accuracy of the ocean color products.

Wintertime Extreme Storm Waves in the East Sea: Estimation of Extreme Storm Waves and Wave-Structure Interaction Study in the Fushiki Port, Toyama Bay (동해의 동계 극한 폭풍파랑: 토야마만 후시키항의 극한 폭풍파랑 추산 및 파랑 · 구조물 상호작용 연구)

  • Lee, Han Soo;Komaguchi, Tomoaki;Yamamoto, Atsushi;Hara, Masanori
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.335-347
    • /
    • 2013
  • In February 2008, high storm waves due to a developed atmospheric low pressure system propagating from the west off Hokkaido, Japan, to the south and southwest throughout the East Sea (ES) caused extensive damages along the central coast of Japan and along the east coast of Korea. This study consists of two parts. In the first part, we estimate extreme storm wave characteristics in the Toyama Bay where heavy coastal damages occurred, using a non-hydrostatic meteorological model and a spectral wave model by considering the extreme conditions for two factors for wind wave growth, such as wind intensity and duration. The estimated extreme significant wave height and corresponding wave period were 6.78 m and 18.28 sec, respectively, at the Fushiki Toyama. In the second part, we perform numerical experiments on wave-structure interaction in the Fushiki Port, Toyama Bay, where the long North-Breakwater was heavily damaged by the storm waves in February 2008. The experiments are conducted using a non-linear shallow-water equation model with adaptive mesh refinement (AMR) and wet-dry scheme. The estimated extreme storm waves of 6.78 m and 18.28 sec are used for incident wave profile. The results show that the Fushiki Port would be overtopped and flooded by extreme storm waves if the North-Breakwater does not function properly after being damaged. Also the storm waves would overtop seawalls and sidewalls of the Manyou Pier behind the North-Breakwater. The results also depict that refined meshes by AMR method with wet-dry scheme applied capture the coastline and coastal structure well while keeping the computational load efficiently.

Study of Prediction Model Improvement for Apple Soluble Solids Content Using a Ground-based Hyperspectral Scanner (지상용 초분광 스캐너를 활용한 사과의 당도예측 모델의 성능향상을 위한 연구)

  • Song, Ahram;Jeon, Woohyun;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.559-570
    • /
    • 2017
  • A partial least squares regression (PLSR) model was developed to map the internal soluble solids content (SSC) of apples using a ground-based hyperspectral scanner that could simultaneously acquire outdoor data and capture images of large quantities of apples. We evaluated the applicability of various preprocessing techniques to construct an optimal prediction model and calculated the optimal band through a variable importance in projection (VIP)score. From the 515 bands of hyperspectral images extracted at wavelengths of 360-1019 nm, 70 reflectance spectra of apples were extracted, and the SSC ($^{\circ}Brix$) was measured using a digital photometer. The optimal prediction model wasselected considering the root-mean-square error of cross-validation (RMSECV), root-mean-square error of prediction (RMSEP) and coefficient of determination of prediction $r_p^2$. As a result, multiplicative scatter correction (MSC)-based preprocessing methods were better than others. For example, when a combination of MSC and standard normal variate (SNV) was used, RMSECV and RMSEP were the lowest at 0.8551 and 0.8561 and $r_c^2$ and $r_p^2$ were the highest at 0.8533 and 0.6546; wavelength ranges of 360-380, 546-690, 760, 915, 931-939, 942, 953, 971, 978, 981, 988, and 992-1019 nm were most influential for SSC determination. The PLSR model with the spectral value of the corresponding region confirmed that the RMSEP decreased to 0.6841 and $r_p^2$ increased to 0.7795 as compared to the values of the entire wavelength band. In this study, we confirmed the feasibility of using a hyperspectral scanner image obtained from outdoors for the SSC measurement of apples. These results indicate that the application of field data and sensors could possibly expand in the future.

The Physiological Effects of Controlled Respiration on the Electroencephalogram (호흡유도(呼吸誘導)에 따른 전두부(前頭部) 뇌파(腦波)에 관한 연구(硏究))

  • Kim, Hye-Kyung;Shin, Sang-Hoon;Nam, Tong-Hyun;Park, Yong-Jae;Hong, In-Ki;Lee, Dong-Hoon;Lee, Sang-Chul;Park, Young-Bae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.10 no.1
    • /
    • pp.109-140
    • /
    • 2006
  • Background: In practicing qigong, People must achieve three Points : adjust their Posture, control their breathing and have a peace of mind. That is, Cho-Sin [調身] , Cho-Sik [調息] , Cho-Sim [調心] . Slow respiration is the important pattern of respiration to improve the human health. However, unsuitable breathing training have been occurred to mental disorder such as insomnia, anorexia etc. So, we think that the breathing training to consider the individual variations are desired. Objectives: We performed this study to examine the physiological effects of controlled respiration on the normal range of frequency domain electroencephalogram(EEC) in healthy subjects Also, to study examine individual variations according to the physiological effects between controlled respiration and Han-Yeol [寒熱] , respiration period, gender and age-related groups on the EEC in healthy subjects. Methods: When the subjects controlled the time of breathing (inspiration and expiration time) consciously, compared with natural respiration, and that their physiological phenomena are measured by EEC. In this research we used breathing time as in a qigong training (The Six-Word Excise) and observed physiological phenomena of the controlled natural respiration period with the ratio of seven to three(longer inspiration) and three to seven(longer expiration) . We determined, heat-cold score by Han-Yeol [寒熱] questionnaire, average of natural respiration period, according to decade, EEC of 140 healthy subjects (14 to 68 years old; 38 males, 102 females) by means of alpha, beta spectral relative power. Results: 1) In Controlled respiration compared with the natural respiration, ${\alpha}\;I\;(Fp2)\;and\;{\beta}$ I (Fpl, Fp2, F3, F4) decreased on the EEC. 2) In controlled respiration compared with the natural respiration, ${\beta}$ I (Fpl, Fp2, F3, F4) increased with cold group, ${\alpha}/{\beta}$(F3) decreased with heat group, ${\alpha}$ I (Fp2)increased with cold group in longer inspiration. But by means of compound effects, ${\alpha}$ II(F3) increased with cold group in longer inspiration, the other side ${\alpha}$ I (F3) decreased with heat group in controlled respiration on the EEC. 3) In controlled respiration compared with the natural respiration, ${\alpha}$ I (Fp2) decreased with decreased-respiratory-rate(D.R.R.) group, ${\beta}$ I (Fpl, Fp2, F3, F4) increased with D.R.R. and D.R.R. groups, ${\alpha}/{\beta}$(F3) decreased with D.R.R. group. But by means of compound effects, in controlled respiration compared with the natural respiration, ${\alpha}/{\beta}$(F3) decreased with D.R.R. group on the EEG. 4) In controlled respiration compared with the natural respiration, ${\beta}$ I (Fpl, F3, F4) increased with female cup, ${\beta}$ I (Fp2) increased with male and female groups, ${\alpha}/{\beta}$(F3) decreased with male group. But by means of compound effects, in controlled respiration compared with the natural respiration, ${\alpha}$ I (Fp2) increased with female group on the EEC. 5) Compared with the natural respiration, in longer expiration ${\alpha}$ I (Fp2) increased in their forties group, in longer inspiration ${\alpha}$ I (Fp2) increased in their fifties group. But by means of compound effects, in controlled respiration compared with the natural respiration, ${\beta}$ I (Fpl) decreased in teens group on the EEG.

  • PDF

Neurochemical Profile Quantification of Regional Adult Mice Brain Using: ex vivo $^1H$ High-Resolution Magic Angle Spinning NMR Spectroscopy (생체 외 조직 고 분해능 Magic Angle Spinning을 이용한 정상 Adult Mice에서의 뇌 부위별 뇌 신경화학 대사물질 정량분석)

  • Lee, Do-Wan;Woo, Dong-Cheol;Lee, Sung-Ho;Kim, Sang-Young;Kim, Goo-Young;Rhim, Hyang-Shuk;Choi, Chi-Bong;Kim, Hwi-Yool;Lee, Chang-Wook;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • The purpose of this study is to quantitate regional neurochemical profile of regional normal adult mice brain and assess regional metabolic differences by using ex vivo $^1H$ high-resolution magic angle spinning nuclear magnetic resonance spectroscopy ($^1H$ HR-MAS NMRS). The animals were matched in sex and age. The collected brain tissue included frontal cortex, temporal cortex, thalamus, and hippocampus. Quantitative 1D spectra were acquired on 40 samples with the CPMG pulse sequence (8 kHz spectral window, TR/TE = 5500/2.2 ms, NEX = 128, scan time: 17 min 20 sec). The mass of brain tissue and $D_2O$+TSP solvent were 8~14 mg and 7~13 mg. A total of 16 metabolites were quantified as follow: Acet, NAA, NAAG, tCr, Cr, tCho, Cho, GPC + PC, mIns, Lac, GABA, Glu, Gln, Tau and Ala. As a results, Acet, Cho, NAA, NAAG and mIns were showed significantly different aspects on frontal cortex, hippocampus, temporal cortex and thalamus respectively. The present study demonstrated that absolute metabolite concentrations were significantly different among four brain regions of adult mice. Our finding might be helpful to investigate brain metabolism of neuro-disease in animal model.

Estimation of Chlorophyll-a Concentrations in the Nakdong River Using High-Resolution Satellite Image (고해상도 위성영상을 이용한 낙동강 유역의 클로로필-a 농도 추정)

  • Choe, Eun-Young;Lee, Jae-Woon;Lee, Jae-Kwan
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.613-623
    • /
    • 2011
  • This study assessed the feasibility to apply Two-band and Three-band reflectance models for chlorophyll-a estimation in turbid productive waters whose scale is smaller and narrower than ocean using a high spatial resolution image. Those band ratio models were successfully applied to analyzing chlorophyll-a concentrations of ocean or coastal water using Moderate Imaging Spectroradiometer(MODIS), Sea-viewing Wide Field-fo-view Sensor(SeaWiFS), Medium Resolution Imaging Spectrometer(MERIS), etc. Two-band and Three-band models based on band ratio such as Red and NIR band were generally used for the Chl-a in turbid waters. Two-band modes using Red and NIR bands of RapidEye image showed no significant results with $R^2$ 0.38. To enhance a band ratio between absorption and reflection peak, We used red-edge band(710 nm) of RapidEye image for Twoband and Three-band models. Red-RE Two-band and Red-RE-NIR Three-band reflectance model (with cubic equation) for the RapidEye image provided significance performances with $R^2$ 0.66 and 0.73, respectively. Their performance showed the 'Approximate Prediction' with RPD, 1.39 and 1.29 and RMSE, 24.8, 22.4, respectively. Another three-band model with quadratic equation showed similar performances to Red-RE two-band model. The findings in this study demonstrated that Two-band and Three-band reflectance models using a red-edge band can approximately estimate chlorophyll-a concentrations in a turbid river water using high-resolution satellite image. In the distribution map of estimated Chl-a concentrations, three-band model with cubic equation showed lower values than twoband model. In the further works, quantification and correction of spectral interferences caused by suspended sediments and colored dissolved organic matters will improve the accuracy of chlorophyll-a estimation in turbid waters.