• Title/Summary/Keyword: spectral study

Search Result 2,785, Processing Time 0.028 seconds

Studies on Predicting Chemical Composition of Permanent Pastures in Hilly Grazing Area Using Near-Infrared Spectroscopy (근적외선 분광법을 이용한 산지방목지 목초시료 화학적 성분 분석에 관한 연구)

  • Park, Hyung-Soo;Lee, Hyo-Jin;Lee, Hyo-won;Ko, Han-Jong;Jeong, Jong-Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.2
    • /
    • pp.154-160
    • /
    • 2017
  • This study was conducted to find out an alternative way of rapid and accurate analysis of chemical composition of permanent pastures in hilly grazing area. Near reflectance infrared spectroscopy (NIRS) was used to evaluate the potential for predicting proximate analysis of permanent pastures in a vegetative stage. 386 pasture samples obtained from hilly grazing area in 2015 and 2016 were scanned for their visible-NIR spectra from 400~2,400nm. 163 samples with different spectral characteristics were selected and analysed for moisture, crude protein (CP), crude ash (CA), acid detergent fiber (ADF) and neutral detergent fiber (NDF). Multiple linear regression was used with wet analysis data and spectra for developing the calibration and validation mode1. Wavelength of 400 to 2500nm and near infrared range with different critical T outlier value 2.5 and 1.5 were used for developing the most suitable equation. The important index in this experiment was SEC and SEP. The $R^2$ value for moisture, CP, CA, CF, Ash, ADF, NDF in calibration set was 0.86, 0.94, 0.91, 0.88, 0.48 and 0.93, respectively. The value in validation set was 0.66, 0.86, 0.83, 0.71, 0.35 and 0.88, respectively. The results of this experiment indicate that NIRS is a reliable analytical method to assess forage quality for CP, CF, NDF except ADF and moisture in permanent pastures when proper samples incorporated into the equation development.

Prediction of the Chemical Composition and Fermentation Parameters of Fresh Coarse Italian Ryegrass Haylage using Near Infrared Spectroscopy

  • Kim, Ji Hye;Park, Hyung Soo;Choi, Ki Choon;Lee, Sang Hoon;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Near infrared spectroscopy (NIRS) is a rapid and accurate method for analyzing the quality of cereals, and dried animal forage. However, one limitation of this method is its inability to measure fermentation parameters in dried and ground samples because they are volatile, and therefore, respectively lost during the drying process. In order to overcome this limitation, in this study, fresh coarse haylage was used to test the potential of NIRS to accurately determine chemical composition and fermentation parameters. Fresh coarse Italian ryegrass haylage samples were scanned at 1 nm intervals over a wavelength range of 680 to 2500 nm, and optical data were recorded as log 1/reflectance. Spectral data, together with first- and second-order derivatives, were analyzed using partial least squares (PLS) multivariate regressions; scatter correction procedures (standard normal variate and detrend) were used in order to reduce the effect of extraneous noise. Optimum calibrations were selected based on their low standard error of cross validation (SECV) values. Further, ratio of performance deviation, obtained by dividing the standard deviation of reference values by SECV values, was used to evaluate the reliability of predictive models. Our results showed that the NIRS method can predict chemical constituents accurately (correlation coefficient of cross validation, $R_{cv}^2$, ranged from 0.76 to 0.97); the exception to this result was crude ash ($R_{cv}^2=0.49$ and RPD = 2.09). Comparison of mathematical treatments for raw spectra showed that second-order derivatives yielded better predictions than first-order derivatives. The best mathematical treatment for DM, ADF, and NDF, respectively was 2, 16, 16, whereas the best mathematical treatment for CP and crude ash, respectively was 2, 8, 8. The calibration models for fermentation parameters had low predictive accuracy for acetic, propionic, and butyric acids (RPD < 2.5). However, pH, and lactic and total acids were predicted with considerable accuracy ($R_{cv}^2$ 0.73 to 0.78; RPD values exceeded 2.5), and the best mathematical treatment for them was 1, 8, 8. Our findings show that, when fresh haylage is used, NIRS-based calibrations are reliable for the prediction of haylage characteristics, and therefore useful for the assessment of the forage quality.

A Study on Detection of Deforested Land Using Aerial Photographs (항공사진을 이용한 훼손 산지 탐지 연구)

  • Ham, Bo Young;Lee, Chun Yong;Byun, Hye Kyung;Min, Byoung Keol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.3
    • /
    • pp.11-17
    • /
    • 2013
  • With high social demands for the diverse utilizations of forest lands, the illegal forest land use changes have increased. We studied change detection technique to detect changes in forest land use using an object-oriented segmentation of RED bands differencing in multi-temporal aerial photographs. The new object-oriented segmentation method consists of the 5 steps, "Image Composite - Segmentation - Reshaping - Noise Remover - Change Detection". The method enabled extraction of deforested objects by selecting a suitable threshold to determine whether the objects was divided or merged, based on the relations between the objects, spectral characteristics and contextual information from multi-temporal aerial photographs. The results found that the object-oriented segmentation method detected 12% of changes in forest land use, with 96% of the average detection accuracy compared by visual interpretation. Therefore this research showed that the spatial data by the object-oriented segmentation method can be complementary to the one by a visual interpretation method, and proved the possibility of automatically detecting and extracting changes in forest land use from multi-temporal aerial photographs.

Growth of Thin Film using Chemical Bath Deposition Method and Their Photoconductive Characterics ($Cd_{1-x}Zn_{x}S$ 박막의 성장과 광전도 특성)

  • Lee, S.Y.;Hong, K.J.;You, S.H.;Shin, Y.J.;Lee, K.K.;Suh, S.S.;Kim, H.S.;Yun, E.H.;Kim, S.U.;Park, H.S.;Shin, Y.J.;Jeong, T.S.;Shin, H.K.;Kim, T.S.;Moon, J.D.;Lee, C.I.;Jeon, S.L.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.60-70
    • /
    • 1995
  • Polycrystalline $Cd_{1-x}Zn_{x}S$ thin film were grown on slide glass(corning-2948) substrate using a chemical bath deposition (C.B.D) method. They were annealed at various temperature and X -ray diffraction patterns were measured by X-ray diffractometor in order to study $Cd_{1-x}Zn_{x}S$ polycrystal structure using extrapolation method of X-ray diffraction patterns for the CdS, ZnS sample annealed in $N_{2}$ gas at $550^{\circ}C$. It was found hexagonal structure which had the lattice constant $a_{0}\;=\;4.1364{\AA}$, $c_{0}\;=\;6.7129{\AA}$ in CdS and $a_{0}\;=\;3.8062{\AA}$, $c_{0}\;=\;6.2681{\AA}$ in ZnS, respectively. Hall effect on these sample was measured by Van der Pauw method and then studied on carrier density and mobility depending on temperature. We measured also spectral response, sensitivity maximum allowable power dissipation and response time on these sample.

  • PDF

QoS Guarantee for Service Classes based on Performance Analysis of Cross-Layer Retransmission Scheme (다 계층 재전송 방식 성능 분석을 통한 서비스별 QoS 보장 기법)

  • Go, Kwang-Chun;Lee, Hyun-Jin;Kim, Jae-Hyun;Choo, Sang-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.95-104
    • /
    • 2010
  • In wireless communication system, a variety of retransmission algorithms are used in order to improve the quality of service of users. But the system may be inefficient because retransmission algorithms operate independently with other layers. Also, the quality of service can be degraded due to the unnecessary retransmission of packets. To solve these problems, the study on the cross-layer retransmission schemes have been widely performed. However, in order to apply cross-layer retransmission schemes to wireless communication system, whether the performance of cross-layer retransmission schemes meets QoS requirements of each service class has to be verified. Thus, this paper proposes the mathematical model for analyzing the performance of the cross-layer retransmission schemes and derives both the suitable retransmission scheme and the optimal retransmission parameter on each service class. The proposed mathematical model selects the MCS level based on channel state information and The performance analysis is comparatively easy in case that HARQ, ARQ, and AMC schemes are combined. The proposed mathematical model also enables the analysis of the packet transmission delay. To utilize the analytical model, this paper derives the suitable retransmission scheme and the optimal retransmission parameter for delay sensitive services in WiMAX system. Also, the proposed analytical model can be used to analyze the performance of wireless communication system such as LTE and WLAN.

Seismic Response from Microtremor of Chogye Basin, Korea (초계분지의 상시미동 지진응답)

  • Lee, Heekyoung;Kim, Roungyi;Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.88-95
    • /
    • 2017
  • Chogye basin, which is surrounded by country rock, has a closed-basin form. In such a basin, incident seismic energy can form multiply reflected waves, thus causing energy concentration to occur at this closed-basin area. Microtremor measurement survey was performed at the Chogye basin, which is located in Chogye-myeon and Jeokjungmyeon, Hapcheon-gun, Gyeongsangnam-do, Republic of Korea. Microtremor data were transformed into the frequency domain, and then the horizontal-to-vertical spectral ratios (HVSR) were calculated. Fundamental resonance frequencies were estimated from the HVSR results for every observation point. Using the empirical relationship between site period and thickness for sediment sites in Korea known from the previous study, the distribution of sediment thickness of the Chogye basin was estimated from the fundamental resonance frequencies. Being compared with the mountainous rim with steep slope, the measurement points inside the basin have low values of the fundamental resonance frequency with the minimum of 1.03 Hz, which corresponds to the thickness of sedimentary layer with the maximum depth of about 100 m. A three-dimensional basin model was constructed for bedrock topography of the Chogye basin by an interpolation of basin depths estimated at each measurement site.

Surface Wave Method: Focused on Active Method (표면파 탐사: 능동 탐사법을 중심으로)

  • Kim, Bitnarae;Cho, Ahyun;Cho, Sung Oh;Nam, Myung Jin;Pyun, Sukjoon;Hayashi, Koich
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.210-224
    • /
    • 2019
  • Surface wave (SW) surveys, which have been applied to numerous application fields ranging from micro-scale ultrasonic analysis to geological scale analysis, are widely used to monitor near-surface stability. The survey method is basically made through analysis on dispersion of SW propagating along the earth surface, in order to delineate shear velocity structure of subsurface. SW survey data are inverted with assuming one-dimensional (1D) layered-earth in order to recover shear wave velocities of each layer, after being analyzed to make the dispersion curve that shows phase velocity of SW with respect to frequency. This study reviews surface wave surveys with explaining the basic theory including the characteristics of dispersion and the procedure of general data processing. Even though surface wave surveys can be categorized into active and passive methods, this paper focuses only on active surface wave methods which includes continuous SW (CSW), spectral analysis of SW (SASW) and multichannel analysis of SW (MASW). Passive method will be reviewed in the subsequent paper.

Investigation of the Acoustic Performance of Music Halls Using Measured Radiation Characteristics of the Korean Traditional Musical Instruments (국악기의 음향방사특성에 따른 국악당의 음향성능조사)

  • Haan Chan-Hoon;Lee Wangu;Jeong Cheol-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.469-480
    • /
    • 2005
  • There have been always some difficulties in target setting and conditioning of acoustic performances or the Korean traditional music hall due mainly to the lack of the information on the sound radiation characteristics of Korean musical sources. As the 2nd experiment succeeding the previous study[1], the radiation characteristics of eight typical Korean traditional musical sources were investigated if precision. The selected musical sources were Geomungo, Haegeum (string), Piri, Taepyeongso (woodwind), Buk, Kwaengguari, Jing (drum), and male Pansori Chang (vocal Performance). The results show that the directivity pattern of each instrument is different and has their own directivity characteristics. Measured directional and spectral characteristics of traditional Korean music sources were implemented into the computation of architectural acoustic measures. Significant differences in the acoustic measures at receiver positions were observed between the results in using the omni-directional source and the directional one. In order to investigate the acoustical characteristics of the instruments depending on the spatial variation four different shapes of halls were introduced including rectangular, fan. horse-shoe and geometrical shapes. Room acoustical parameters such as RT, SPL, C80, LF, STI were calculated at each type or hall. As the results, It was found that the rectangular hall has the most high clarity. lateral energy and STI values among low shapes of halls. It is thought that the suggested source data and design method can be used as a basic reference in the future acoustic design of performance halls for the Korean traditional music.

Risk-Targeted Seismic Performance of Steel Ordinary Concentrically Braced Frames Considering Seismic Hazard (지진재해도를 고려한 철골 보통중심가새골조의 위험도기반 내진성능)

  • Shin, Dong-Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.371-380
    • /
    • 2017
  • The risk-targeted seismic design concept was first included in ASCE/SEI 7-10 to address problems related to the uniform-hazard based seismic concept that has been constructed without explicitly considering probabilistic uncertainties in the collapse capacities of structures. However, this concept is not yet reflected to the current Korean building code(KBC) because of insufficient strong earthquake data occurred at the Korean peninsula and little information on the collapse capacities of structures. This study evaluates the risk-targeted seismic performance of steel ordinary concentrically braced frames(OCBFs). To do this, the collapse capacities of prototype steel OCBFs are assessed with various analysis parameters including building locations, building heights and soil conditions. The seismic hazard curves are developed using an empirical spectral shape prediction model that is capable of reflecting the characteristics of earthquake records. The collapse probabilities of the prototype steel OCBFs located at the Korean major cities are then evaluated using the risk integral concept. As a result, analysis parameters considerably influence the collapse probabilities of steel OCBFs. The collapse probabilities of taller steel OCBFs exceed the target seismic risk of 1 percent in 50 years, which the introduction of the height limitation of steel OCBFs into the future KBC should be considered.

Real-Time Monitoring of Mitochondrial ATP Synthesis and Hydrolysis by Surface Infrared Spectroscopy

  • Yamaguchi, Ryo-Taro;Hirano-Iwata, Ayumi;Aonuma, Yuki;Yoshimura, Yuya;Shinohara, Yasuo;Kimura, Yasuo;Niwano, Michio
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.108-109
    • /
    • 2013
  • Mitochondria play key roles in the production of cell's energy. Their dominant function is the synthesis of adenosine 5'-triphosphate (ATP) from adenosine diphosphate (ADP) and phosphate (Pi) through the oxidative phosphorylation. Evaluation of drug-induced mitochondrial toxicity has become increasingly important since mitochondrial dysfunction has recently been implicated in numerous diseases including cancer and diabetes mellitus. Mitochondrial functions have been monitored via oxygen consumption, mitochondrial membrane potential, and more importantly via ATP synthesis since ATP synthesis is the most essential function of mitochondria. Various analytical methods have been employed to investigate ATP synthesis in mitochondria, including high performance liquid chromatography (HPLC), bioluminescence technique, and pH measurement. However, most of these methods are based on destructive analysis or indirect monitoring through the enzymatic reaction. Infrared absorption spectroscopy (IRAS) is one of the useful techniques for real-time, label-free, and direct monitoring of biological reactions [1,2]. However, the strong water absorption requires very short path length in the order of several micrometers. Transmission measurements with thin path length are not suitable for mitochondrial assays because solution handlings necessary for evaluating mitochondrial toxicity, such as rapid mixing of drugs and oxygen supply, are difficult in such a narrow space. On the other hand, IRAS in the multiple internal reflection (MIR) geometry provides an ideal optical configuration to combine solution handling and aqueous-phase measurement. We have recently reportedon a real-time monitoring of drug-induced necrotic and apoptotic cell death using MIR-IRAS [3,4]. Clear discrimination between viable and damaged cells has been demonstrated, showing a promise as a label-free and real-time detection for cell-based assays. In the present study, we have applied our MIR-IRAS system to mitochondria-based assays by monitoring ATP synthesis in isolated mitochondria from rat livers. Mitochondrial ATP synthesis and hydrolysis were in situ monitored with MIR-IRAS, while dissolved oxygen level and solution pH were simultaneously monitored with O2 and pH electrodes, respectively. It is demonstrated that ATP synthesis and hydrolysis can be monitored by the IR spectral changes in phosphate groups in adenine nucleotides and MIR-IRAS is useful for evaluating time-dependent drug effects of mitochondrial toxicants.

  • PDF