• Title/Summary/Keyword: spectral model

Search Result 1,304, Processing Time 0.023 seconds

Spectral Element modeling for the one-dimensional blood flow analysis (일차원 혈류해석을 위한 스펙트럴 요소 모델링)

  • Jang, In-Joon;Lee, U-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.152-155
    • /
    • 2008
  • The blood flow characteristics have been closely related to various cardiovascular diseases, it is very important to predict them accurate enough in an efficient way. Thus, this paper proposes a one-dimensional spectral element model for the blood flow through blood vessels. The spectral element model is formulated by using the variational method. The nonlinear terms in spectral element model are all treated as the pseudo-force and an iterative solution method is applied in the frequency domain.

  • PDF

Structural Damage Identification by Using the Structurally Damped Spectral Element Model (구조감쇠가 고려된 스펙트럴요소 모델을 이용한 구조손상규명)

  • Kim, Jung-Soo;Cho, Joo-Yong;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.121-126
    • /
    • 2004
  • In this paper, a nonlinear structural damage identification algorithm is derived by taking into account the structurally damped spectral element model thinking over a real situation. The structural damage identification analyses are conducted by using the Newton-Raphson method. It is found that, in general Structural Damage Identification by using the Structurally Damped Spectral Element Model provides the same exact damage identification results when compared with the results obtained by the structurally undamped spectral model.

  • PDF

An approximate spectral element model for the dynamic analysis of an FGM bar in axial vibration

  • Lee, Minsik;Park, Ilwook;Lee, Usik
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.551-561
    • /
    • 2017
  • As FGM (functionally graded material) bars which vibrate in axial or longitudinal direction have great potential for applications in diverse engineering fields, developing a reliable mathematical model that provides very reliable vibration and wave characteristics of a FGM axial bar, especially at high frequencies, has been an important research issue during last decades. Thus, as an extension of the previous works (Hong et al. 2014, Hong and Lee 2015) on three-layered FGM axial bars (hereafter called FGM bars), an enhanced spectral element model is proposed for a FGM bar model in which axial and radial displacements in the radial direction are treated more realistic by representing the inner FGM layer by multiple sub-layers. The accuracy and performance of the proposed enhanced spectral element model is evaluated by comparison with the solutions obtained by using the commercial finite element package ANSYS. The proposed enhanced spectral element model is also evaluated by comparison with the author's previous spectral element model. In addition, the effects of Poisson's ratio on the dynamics and wave characteristics in example FGM bars are numerically investigated.

Spectral Element Analysis of the Pipeline Conveying Internal Unsteady Fluid (내부 비정상 유동을 갖는 파이프계의 스펙트럼요소해석)

  • Park, Jong-Hwan;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1574-1585
    • /
    • 2005
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid. Four coupled pipe-dynamics equations are derived first by using the Hamilton's principle and the principles of fluid mechanics. The transverse displacement, the axial displacement, the fluid pressure and the fluid velocity are all considered as the dependent variables. The coupled pipe-dynamics equations are then linearized about the steady state values of the fluid pressure and velocity. As the final step, the spectral element model represented by the exact dynamic stiffness matrix, which is often called spectral element matrix, is formulated by using the frequency-domain solutions of the linearized pipe-dynamics equations. The FFT-based spectral dynamic analyses are conducted to evaluate the accuracy of the present spectral element model and also to investigate the structural dynamic characteristics and the internal fluid transients of an example pipeline system.

Prediction of Spectral Acceleration Response Based on the Statistical Analyses of Earthquake Records in Korea (국내 지진기록의 통계적 분석에 기반한 스펙트럴 가속도 응답 예측기법)

  • Shin, Dong-Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.45-54
    • /
    • 2016
  • This study suggests a prediction model of ground motion spectral shape considering characteristics of earthquake records in Korea. Based on the Graizer and Kalkan's prediction procedure, a spectral shape model is defined as a continuous function of period in order to improve the complex problems of the conventional models. The approximate spectral shape function is then developed with parameters such as moment magnitude, fault distance, and average shear velocity of independent variables. This paper finally determines estimator coefficients of subfunctions which explain the corelation among the independent variables using the nonlinear optimization. As a result of generating the prediction model of ground motion spectral shape, the ground motion spectral shape well estimates the response spectrum of earthquake recordings in Korea.

Efficient Method for Recovering Spectral Reflectance Using Spectrum Characteristic Matrix (스펙트럼 특성행렬을 이용한 효율적인 반사 스펙트럼 복원 방법)

  • Sim, Kyudong;Park, Jong-Il
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1439-1444
    • /
    • 2015
  • Measuring spectral reflectance can be regarded as obtaining inherent color parameters, and spectral reflectance has been used in image processing. Model-based spectrum recovering, one of the method for obtaining spectral reflectance, uses ordinary camera with multiple illuminations. Conventional model-based methods allow to recover spectral reflectance efficiently by using only a few parameters, however it requires some parameters such as power spectrum of illuminations and spectrum sensitivity of camera. In this paper, we propose an enhanced model-based spectrum recovering method without pre-measured parameters: power spectrum of illuminations and spectrum sensitivity of camera. Instead of measuring each parameters, spectral reflectance can be efficiently recovered by estimating and using the spectrum characteristic matrix which contains spectrum parameters: basis function, power spectrum of illumination, and spectrum sensitivity of camera. The spectrum characteristic matrix can be easily estimated using captured images from scenes with color checker under multiple illuminations. Additionally, we suggest fast recovering method preserving positive constraint of spectrum by nonnegative basis function of spectral reflectance. Results of our method showed accurately reconstructed spectral reflectance and fast constrained estimation with unmeasured camera and illumination. As our method could be conducted conveniently, measuring spectral reflectance is expected to be widely used.

Spectral Element Analysis of an Axially Moving Thermoelastic Beam (축 방향으로 이동하는 열 탄성 보의 스펙트럴요소해석)

  • 김도연;권경수;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.239-244
    • /
    • 2004
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics may provide very accurate solutions, together with drastically reducing the number of degrees of freedom to improve the computation efficiency and cost problems. Thus, this paper develops a spectral element model for the coupled thermoelastic beam which axially moves with constant speed under a uniform tension. The accuracy of the spectral element model is then evaluated by comparing the natural frequencies obtained by the present element model with those obtained by the conventional finite element model.

Spectral Element Analysis for an Axially Moving Viscoelastic Beam

  • Hyungmi Oh;Jooyong Cho;Lee, Usik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1159-1168
    • /
    • 2004
  • In this paper, a spectral element model is derived for the axially moving viscoelastic beams subject to axial tension. The viscoelastic material is represented in a general form by using the one-dimensional constitutive equation of hereditary integral type. The high accuracy of the present spectral element model is verified first by comparing the eigenvalues obtained by the present spectral element model with those obtained by using the conventional finite element model as well as with the exact analytical solutions. The effects of viscoelasticity and moving speed on the dynamics of moving beams are then numerically investigated.

Spectral Element Modeling for the Blood Flow through Artery (동맥 유동해석을 위한 스펙트럴 요소의 개발)

  • Jang, In-Joon;Seo, Bo-Sung;Lee, U-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.383-386
    • /
    • 2007
  • As the blood flow characteristics have been recognized to be closely related to various cardiovascular diseases, it is very important to predict them accurate enough in an efficient way. Thus, this paper proposes a one-dimensional spectral finite element model for the human blood vessels. The spectral finite element model is formulated in the frequency-domain by using the exact frequency dependent shape functions and applied to an ascending aorta.

  • PDF

Sensitivity of Input Parameters in the Spectral Wave Model

  • Park, Hyo-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.28-36
    • /
    • 2009
  • Many researches have been done to define the physical parameters for the wave generation and transformation over a coastal region. However, most of these have been limited to the application of particular conditions, as they are generally too empirical. To yield more reasonable wave estimation using a spectral wave model, it is important to understand how they work for the wave estimation. This study involved a comprehensive sensitivity test against the spectral resolution and the physical source/sink terms of the spectral wave model using SWAN and TOMAWAC, which have the same physical background with several different empirical/theoretical formulations. The tests were conducted for the East Anglian coast, UK, which is characterized by a complex bathymetry due to several shoals and offshore sandbanks. For the quantitative and qualitative evaluation of the models' performance with different input conditions, the wave elements and spectrums predicted at representative sites the East Anglia coast were compared/analyzed. The spectral resolution had no significant effect on the model results, but the lowest resolution on the frequency and direction induced underestimations of the wave height and period. The bottom friction and depth-induced breaking terms produced relatively high variations in the wave prediction, depending on which formulation was applied. The terms for the quadruplet and whitecapping had little effect on the wave estimation, whereas the triads tended to predict shorter and higher waves by energy transferring to higher frequencies.