• Title/Summary/Keyword: spectral design

Search Result 679, Processing Time 0.026 seconds

Analysis of Numerical Model Wave Predictions for Coastal Waters at Gunsan-Janghang Harbor Entrance

  • Lee Joong-Woo;Lee Hak-Seung;Lee Hoon;Jeon Min-Su;Kim Kang-Min
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.627-634
    • /
    • 2005
  • Gunsan-Janghang Harbor is located at the mouth of Gum River, on the central west coast of Korea The harbor and coastal boundaries are protected from the effects of the open ocean by natural coastal islands and shoals due to depositions from the river, and two breakwaters. The navigation channel commences at the gap formed by the outer breakwater and extends through a bay via a long channel formed by an isolated jetty. For better understanding and analysis of wave transformation process where a wide coastline changes appear due to on-going reclamation works, we applied the spectral wave model including wind effect to the related site, together with the energy balance models. This paper summarizes comparisons of coastal responses predicted by several numerical wave predictions obtained at the coastal waters near Gunsan-Janghang Harbor. Field and numerical model investigations were initially conducted for the original navigation channel management project. We hope to contribute from this study that coastal engineers are able to use safety the numerical models in the area of port and navigational channel design.

Joint Transmitter and Receiver Optimization for Improper-Complex Second-Order Stationary Data Sequence

  • Yeo, Jeongho;Cho, Joon Ho;Lehnert, James S.
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In this paper, the transmission of an improper-complex second-order stationary data sequence is considered over a strictly band-limited frequency-selective channel. It is assumed that the transmitter employs linear modulation and that the channel output is corrupted by additive proper-complex cyclostationary noise. Under the average transmit power constraint, the problem of minimizing the mean-squared error at the output of a widely linear receiver is formulated in the time domain to find the optimal transmit and receive waveforms. The optimization problem is converted into a frequency-domain problem by using the vectorized Fourier transform technique and put into the form of a double minimization. First, the widely linear receiver is optimized that requires, unlike the linear receiver design with only one waveform, the design of two receive waveforms. Then, the optimal transmit waveform for the linear modulator is derived by introducing the notion of the impropriety frequency function of a discrete-time random process and by performing a line search combined with an iterative algorithm. The optimal solution shows that both the periodic spectral correlation due to the cyclostationarity and the symmetric spectral correlation about the origin due to the impropriety are well exploited.

THE ADVANTAGE OF ON ORBIT NON-UNIFORMITY CORRECTION FOR MULTI SPECTRAL CAMERA (MSC)

  • Chang Young-Jun;Kong Jong-Pil;Huh Haeng-Pal;Kim Young-Sun;Park Jong-Euk
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.586-588
    • /
    • 2005
  • The MSC (Multi Spectral Camera) system is a remote sensing payload to obtain high resolution ground image. This system uses lossy image compression method for &Direct mission& that transmit whole image during one contact. But some image degradation occurred especially at high compression ratio. To reduce this degradation, the MSC uses NUC (Non-uniformity Correction) Unit. This unit correct CCD (Charge Coupled Device)'s high-frequency non-uniformity. So high frequency contents of image can be minimized and whole system SNR can be maximized. But NUC has some disadvantage either. It decreases entire system reliability by adding one electronic system. Adding NUC also led to difficulty of electronic design, assembly and testability. In this paper, the comparison is performed between on-orbit non-uniform correction and on ground correction. by evaluating NUC advantage for the point of view of image quality. Using real MSC parameter and proper model, considerable reference point for the system design came to possible.

  • PDF

Vibration Characteristics of Packaged Freight and Packaged Apples by Random Vibration Input (랜덤 진동에 의한 포장화물 및 포장된 사과의 진동특성)

  • Kim, Ghi-Seok;Jung, Hyun-Mo;Kim, Ki-Bok;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Shock and vibration inputs are transmitted from the transporting vehicle through the packaging box to the fruit. The vibration causes sustained bouncing of fruits against each other and the container wall. The steady state vibration input may cause serous fruit injury, and the damage is particularly severe if the fruits are bounced at its resonance frequency. The determination of the resonance frequencies of the fruits and vegetables may help the packaging designer to design the proper packaging system providing adequate protection of the fruits from external impact or shock. In this study, to analyze the vibration properties of the apples for optimum packaging design during transportation, the random vibration tests were carried out. From the results of random vibration test, the resonance frequency and power spectral density (PSD) of the packaged freight of apples in the test were in the range of 82 to 97 Hz and 0.0013 to 0.0021 $G^2/Hz$ respectively and the resonance frequency and PSD of the packaged apples were in the range of 13 to 71 Hz and 0.0143 to 0.0923 $G^2/Hz$ respectively.

Cost-Effectiveness Evaluation of the Structure with Viscoelastic Dampers (점탄성감쇠기를 설치한 구조물의 비용효율성 평가)

  • 고현무;함대기;조상열
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.387-393
    • /
    • 2001
  • Installing vibration control devices in the structure rises as a solution instead of increasing structural strength considering construction cost. Especially, viscoelastic dampers show excellent vibration control performance at low cost and are easy to install in existing structures compared with other control devices. Therefore, cost-effectiveness of structure with viscoelastic dampers needs to be evaluated. Previous cost-effectiveness evaluation method for the seismically isolated structure(Koh et al., 1999;2000)is applied on the building structure with viscoelastic dampers, which combines optimal design and cost-effectiveness evaluation for seismically isolated structures based on minimum life-cycle cost concept. Input ground motion is modeled in the form of spectral density function to take into account acceleration and site coefficients. Damping of the viscoelastic damper is considered by modal strain energy method. Stiffness of shear building and shear area of viscoelastic damper are adopted as design variables for optimization. For the estimation of failure probability, transfer function of the structure with viscoelastic damper for spectral analysis is derived from the equation of motion. Results reveal that cost-effectiveness of the structure with viscoelastic dampers is relatively high in how seismic region and stiff soil condition.

  • PDF

Proposed Efficient Architectures and Design Choices in SoPC System for Speech Recognition

  • Trang, Hoang;Hoang, Tran Van
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.241-247
    • /
    • 2013
  • This paper presents the design of a System on Programmable Chip (SoPC) based on Field Programmable Gate Array (FPGA) for speech recognition in which Mel-Frequency Cepstral Coefficients (MFCC) for speech feature extraction and Vector Quantization for recognition are used. The implementing process of the speech recognition system undergoes the following steps: feature extraction, training codebook, recognition. In the first step of feature extraction, the input voice data will be transformed into spectral components and extracted to get the main features by using MFCC algorithm. In the recognition step, the obtained spectral features from the first step will be processed and compared with the trained components. The Vector Quantization (VQ) is applied in this step. In our experiment, Altera's DE2 board with Cyclone II FPGA is used to implement the recognition system which can recognize 64 words. The execution speed of the blocks in the speech recognition system is surveyed by calculating the number of clock cycles while executing each block. The recognition accuracies are also measured in different parameters of the system. These results in execution speed and recognition accuracy could help the designer to choose the best configurations in speech recognition on SoPC.

AN APPROACH TO THE TRAINING OF A SUPPORT VECTOR MACHINE (SVM) CLASSIFIER USING SMALL MIXED PIXELS

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.386-389
    • /
    • 2008
  • It is important that the training stage of a supervised classification is designed to provide the spectral information. On the design of the training stage of a classification typically calls for the use of a large sample of randomly selected pure pixels in order to characterize the classes. Such guidance is generally made without regard to the specific nature of the application in-hand, including the classifier to be used. An approach to the training of a support vector machine (SVM) classifier that is the opposite of that generally promoted for training set design is suggested. This approach uses a small sample of mixed spectral responses drawn from purposefully selected locations (geographical boundaries) in training. A sample of such data should, however, be easier and cheaper to acquire than that suggested by traditional approaches. In this research, we evaluated them against traditional approaches with high-resolution satellite data. The results proved that it can be used small mixed pixels to derive a classification with similar accuracy using a large number of pure pixels. The approach can also reduce substantial costs in training data acquisition because the sampling locations used are commonly easy to observe.

  • PDF

Design and Fabrication of Triple-coupler Ring Resonator Filter (삼중 결합 링 공진기 필터의 설계 및 제작)

  • Lee, Young-Sik;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • Design and fabrication of a TCRR (Triple-coupler Ring Resonator) filter which can provide a doubled FSR (Free Spectral Range) compared with a conventional DCRR (Double-coupler Ring Resonator) filter, are discussed. Through the use of a polymer material with a good thermo-optic property and with high contrast between core and cladding polymer, a compact TCRR filter composed of straight and curved buried waveguides of small radius is designed and fabricated. The transmission characteristics from the through and drop ports are measured using a tunable laser and a fiber array block, and the FSR is observed to be 4.4 nm, about twice that of DCRR filter, and almost the same as that obtained from the analysis using a transfer matrix method.

Seismic Behavior of Inverted T-type Wall under Earthquake Part II : Effect of Input Earthquake Motion (역T형 옹벽의 지진시 거동특성 Part II : 입력 지진파의 영향)

  • Lee, Jin-sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.9-19
    • /
    • 2016
  • Permanent deformation plays a key role in performance based earthquake resistant design. In order to estimate permanent deformation after earthquake, it is essential to secure reliable response history analysis(RHA) as well as earthquake scenario. This study focuses on permanent deformation of an inverted T-type wall under earthquake. The study is composed of two separate parts. The first one is on the verification of RHA and the second one is on an effect of input earthquake motion. The former is discussed in companion paper and the latter in this paper. In order to investigate the effect of an input earthquake motion on the permanent deformation, three bins of spectral matched real earthquake records with different magnitude, regions, epicentral distance are constructed. Parametric study was performed using the verified RHA through the companion paper for each earthquake records in the bins. The most influential parameter affecting permanent displacement is magnitude. The other parameters describing earthquake motion are not significant enough to increase permanent displacement of the inverted T-type wall except for energy related parameters(AI, CI, SEI).

Random Vibration Analysis for Satellite Design (위성체 설계를 위한 랜덤 진동 해석)

  • Lee, Won-Beom;Kim, Gyeong-Won
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.102-107
    • /
    • 2006
  • In this study, the dynamic environment of satellite consists of excessive vibration at low frequency and irregular acceleration transferred by launch vehicle structure. Excessive vibration at low frequency is generally approximated by a sinusoidal wave from 100Hz to 200Hz and primarily used to preliminary design The random vibration is created by structural vibration due to the combustion of launch vehicle, separation stage and external aerodynamic noise. these are transferred to the adapter structure between satellite and launch vehicle through the structure of launch vehicle. random vibration is being specified for acceptance tests, screening tests, and qualification tests, because it has been shown that random vibration more closely represents the true environments in which the electronic equipment must operate.

  • PDF