• Title/Summary/Keyword: spectral data analysis

Search Result 1,067, Processing Time 0.029 seconds

Automatic Cross-calibration of Multispectral Imagery with Airborne Hyperspectral Imagery Using Spectral Mixture Analysis

  • Yeji, Kim;Jaewan, Choi;Anjin, Chang;Yongil, Kim
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.211-218
    • /
    • 2015
  • The analysis of remote sensing data depends on sensor specifications that provide accurate and consistent measurements. However, it is not easy to establish confidence and consistency in data that are analyzed by different sensors using various radiometric scales. For this reason, the cross-calibration method is used to calibrate remote sensing data with reference image data. In this study, we used an airborne hyperspectral image in order to calibrate a multispectral image. We presented an automatic cross-calibration method to calibrate a multispectral image using hyperspectral data and spectral mixture analysis. The spectral characteristics of the multispectral image were adjusted by linear regression analysis. Optimal endmember sets between two images were estimated by spectral mixture analysis for the linear regression analysis, and bands of hyperspectral image were aggregated based on the spectral response function of the two images. The results were evaluated by comparing the Root Mean Square Error (RMSE), the Spectral Angle Mapper (SAM), and average percentage differences. The results of this study showed that the proposed method corrected the spectral information in the multispectral data by using hyperspectral data, and its performance was similar to the manual cross-calibration. The proposed method demonstrated the possibility of automatic cross-calibration based on spectral mixture analysis.

A CLASSIFICATION METHOD BASED ON MIXED PIXEL ANALYSIS FOR CHANGE DETECTION

  • Jeong, Jong-Hyeok;Takeshi, Miyata;Takagi, Masataka
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.820-824
    • /
    • 2003
  • One of the most important research areas on remote sensing is spectral unmixing of hyper-spectral data. For spectral unmixing of hyper spectral data, accurate land cover information is necessary. But obtaining accurate land cover information is difficult process. Obtaining land cover information from high-resolution data may be a useful solution. In this study spectral signature of endmembers on ASTER acquired in October was calculated from land cover information on IKONOS acquired in September. Then the spectral signature of endmembers applied to ASTER images acquired on January and March. Then the result of spectral unmxing of them evauateted. The spectral signatures of endmembers could be applied to different seasonal images. When it applied to an ASTER image which have similar zenith angle to the image of the spectral signatures of endmembers, spectral unmixing result was reliable. Although test data has different zenith angle from the image of spectral signatures of endmembers, the spectral unmixing results of urban and vegetation were reliable.

  • PDF

The Comparison of Singular Value Decomposition and Spectral Decomposition

  • Shin, Yang-Gyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1135-1143
    • /
    • 2007
  • The singular value decomposition and the spectral decomposition are the useful methods in the area of matrix computation for multivariate techniques such as principal component analysis and multidimensional scaling. These techniques aim to find a simpler geometric structure for the data points. The singular value decomposition and the spectral decomposition are the methods being used in these techniques for this purpose. In this paper, the singular value decomposition and the spectral decomposition are compared.

  • PDF

An Approach to Measurement of Water Quality Factors and its Application Using NOAA satellite Data

  • Jang, Dong-Ho;Jo, Gi-Ho;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.363-370
    • /
    • 1999
  • Remotely sensed data is regarded as a potentially effective data source for the measurement of water quality and for the environmental change of water bodies. In this study, we measured the spectral reflectance by using multi-spectral image of low resolution camera(LRC) which will be loaded in the OSMI multi-purpose satellite(KOMPSAT) scheduled to be launched on 1999 to use the data in analyzing water pollution. We also investigated the possibility of extraction of water quality factors in water bodies by using remotely sensed low resolution data such as NOAA/AVHRR. In this study, Shiwha-District and Sang-Sam Lake was set up as the subject areas for the study. In this part of the study, we measured the spectral reflectance of the water surface to analyze the radiance of the water bodies in low resolution spectral band and tried to analyze the water quality factors in water bodies by using radiance feature from another remotely sensed data such as NOAA/AVHRR. As the method of this study, first, we measured the spectral reflectance of the water surface by using SFOV( Single Field of View) to measure the reflectance of water quality analysis from every channel in LRC spectral band(0.4~O.9${\mu}{\textrm}{m}$). Second, we investigated the usefulness of ground truth data and the LRC data by measuring every spectral reflectance of water quality factors. Third, we analyzed water quality factors by using the radiance feature from another remotely sensed data such as NOAA/AVHRR. We carried out ratio process of what we selected Chlorophyll-a and suspended sediments as the first factors of the water quality. The results of the analysis are below. First, the amount of pollutants of Shiwha-Lake has been increasing every you since 1987 by factors of eutrophication. Second, as a result of the reflectance, Chlorophyll-a represented high spectral reflectance mainly around 0.52${\mu}{\textrm}{m}$ of green spectral band, and turbidity represented high spectral reflectance at 0.57${\mu}{\textrm}{m}$. But suspended sediments absorbed high at 0.8${\mu}{\textrm}{m}$. Third, Chlorophyll-a and suspended sediments could have a distribution chart as a result of the water quality analysis by using NOAA/AVHRR data.

  • PDF

Robust Similarity Measure for Spectral Clustering Based on Shared Neighbors

  • Ye, Xiucai;Sakurai, Tetsuya
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.540-550
    • /
    • 2016
  • Spectral clustering is a powerful tool for exploratory data analysis. Many existing spectral clustering algorithms typically measure the similarity by using a Gaussian kernel function or an undirected k-nearest neighbor (kNN) graph, which cannot reveal the real clusters when the data are not well separated. In this paper, to improve the spectral clustering, we consider a robust similarity measure based on the shared nearest neighbors in a directed kNN graph. We propose two novel algorithms for spectral clustering: one based on the number of shared nearest neighbors, and one based on their closeness. The proposed algorithms are able to explore the underlying similarity relationships between data points, and are robust to datasets that are not well separated. Moreover, the proposed algorithms have only one parameter, k. We evaluated the proposed algorithms using synthetic and real-world datasets. The experimental results demonstrate that the proposed algorithms not only achieve a good level of performance, they also outperform the traditional spectral clustering algorithms.

A Study on the Spectral Anlaysis of Multiple Valued Logic Circuits using Chrestenson Function (Cherstenson 함수를 이용한 MVL 회로의 스펙트럴 분석에 관한 연구)

  • 김종오;신평호
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.32-40
    • /
    • 1999
  • The analysis of logic function is performed by the spectral coefficients which transform the function domain data into the spectral domain data. By using the spectral techniques, analysis of MVL circuits is performaed, and the fault analysis and detecting methods of multiple-valued logic circuits are proposed in this paper.

  • PDF

A parametric study based on spectral fatigue analysis for 170k LNGC

  • Park, Tae-Yoon;Jang, Chang-Doo;Suh, Yong-Suk;Kim, Bong-Jae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.116-121
    • /
    • 2011
  • The Spectral Fatigue Analysis is representative fatigue life assessment method for vessels. This Analysis is performed generally for the whole vessel and many assessment sites. The spectral fatigue analysis is performed through the process of hydrodynamic response analysis, global structural analysis, local structural analysis and calculation of fatigue damage. In these processes, fatigue damage is affected by many variables. The representative variables are S-N curve data, wave scatter data, wave spectrum, bandwidth effect and etc. In this paper, the effects of these variables to the fatigue damage are analyzed through the spectral fatigue analysis for 170k LNGC.

Water-Methanol and Water-Acetonitrile Mixture Analysis using NIR Spectral Data and Iterative Target Transform Factor Analysis

  • Na, Dae-Bok;Hur, Yun-Jeong;Park, Young-Joo;Cho, Jung-Hwan
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1289-1289
    • /
    • 2001
  • Water-methanol and water-acetonitrile mixtures are frequently used as HPLC solvent system and strong hydrogen bonding is well-known. But a detailed aspect of water-methanol and/or water-acetonitrile mixtures have not been shown with direct spectral evidence. Recently, near infrared spectroscopy and chemometric data refinery have been successfully combined in many applications. On the basis of factor analytical methods, the spectral features of water-methanol and water-acetonitrile mixtures were studied to reveal the detail of mixtures. Water-methanol and water-acetonitrile mixtures were prepared with varying concentration of each constituent and near infrared spectral data were acquired in the range of 1100-2500nm with 2-nm interval. The data matrices were analysed with ITTFA(Iterative Target Transform Factor Analysis) algorithm implemented as MATLAB codes. As a result, the concentration profiles of water, methanol and water-methanol complex were resolved and the spectra of water-methanol complexes were calculated, which cannot be acquired with pure complexes. A similar result was obtained with NIR spectral data of water-acetonitrile mixtures. Moreover, pure spectra of hydrogen-bonding complexes of water-methanol and water-acetonitrile can be computed, while any other usual physical methods cannot isolated those complexes for acquiring pure component spectra.

  • PDF

Algorithm for Finding the Best Principal Component Regression Models for Quantitative Analysis using NIR Spectra (근적외 스펙트럼을 이용한 정량분석용 최적 주성분회귀모델을 얻기 위한 알고리듬)

  • Cho, Jung-Hwan
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.6
    • /
    • pp.377-395
    • /
    • 2007
  • Near infrared(NIR) spectral data have been used for the noninvasive analysis of various biological samples. Nonetheless, absorption bands of NIR region are overlapped extensively. It is very difficult to select the proper wavelengths of spectral data, which give the best PCR(principal component regression) models for the analysis of constituents of biological samples. The NIR data were used after polynomial smoothing and differentiation of 1st order, using Savitzky-Golay filters. To find the best PCR models, all-possible combinations of available principal components from the given NIR spectral data were derived by in-house programs written in MATLAB codes. All of the extensively generated PCR models were compared in terms of SEC(standard error of calibration), $R^2$, SEP(standard error of prediction) and SECP(standard error of calibration and prediction) to find the best combination of principal components of the initial PCR models. The initial PCR models were found by SEC or Malinowski's indicator function and a priori selection of spectral points were examined in terms of correlation coefficients between NIR data at each wavelength and corresponding concentrations. For the test of the developed program, aqueous solutions of BSA(bovine serum albumin) and glucose were prepared and analyzed. As a result, the best PCR models were found using a priori selection of spectral points and the final model selection by SEP or SECP.

Algorithm for finding the best regression models using NIR spectra

  • Cho, Jung-Hwan;Huh, Yun-Jung;Park, Young-Joo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.402.2-402.2
    • /
    • 2002
  • An algorithm for finding the best regression models has been developed using NIR spectral data. In cases of regression analysis for quantitation with NIR spectral data, it is very critical to find essential features from the spectral data. This task was accessed in two ways. The first one was to use all-possible combinations of varibles (wavelengths). Correlation coefficients at each spectral points were calculated to get initial set of variables and all of the possible combinations of variable sets were tested with SEC. SEP and/or $R^2$. (omitted)

  • PDF