• Title/Summary/Keyword: spectral data

Search Result 2,620, Processing Time 0.045 seconds

Recursive approximate overdetermined ARMA spectral estimation (순환 근사 과결정 ARMA 스펙트럼 추정)

  • 이철희;이석원;양흥석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.446-450
    • /
    • 1987
  • In this paper, overdetermined method is used for high resolution spectral estimation in case of short data record length. To reduce the computational effort and to obtain recursive form of estimation algorithm, we modify data matrix to have near-Toeplitz structure. Then, new recursive algorithm is derived in the form of fast Kalman algorithm. Two stage procedure is used for the estimation of ARMA parameters. First AR parameters are estimated by using overdetermined modified Yule-walker equation, and then MA parameters are implicitly estimated by estimating numerator spectral coefficients(NS).

  • PDF

Simultaneous Confidence Regions for Spatial Autoregressive Spectral Densities

  • Ha, Eun-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.397-404
    • /
    • 1999
  • For two-dimensional causal spatial autoregressive processes, we propose and illustrate a method for determining asymptotic simultaneous confidence regions using Yule-Walker, unbiased Yule-Walker and least squres estimators. The spectral density for first-order spatial autoregressive model are looked at in more detail. Finite sample properties based on simulation study we also presented.

  • PDF

Spectral Characteristics and Formant Bandwidths of English Vowels by American Males with Different Speaking Styles (발화방식에 따른 미국인 남성 영어모음의 스펙트럼 특성과 포먼트 대역)

  • Yang, Byunggon
    • Phonetics and Speech Sciences
    • /
    • v.6 no.4
    • /
    • pp.91-99
    • /
    • 2014
  • Speaking styles tend to have an influence on spectral characteristics of produced speech. There are not many studies on the spectral characteristics of speech because of complicated processing of too much spectral data. The purpose of this study was to examine spectral characteristics and formant bandwidths of English vowels produced by nine American males with different speaking styles: clear or conversational styles; high- or low-pitched voices. Praat was used to collect pitch-corrected long-term averaged spectra and bandwidths of the first two formants of eleven vowels in the speaking styles. Results showed that the spectral characteristics of the vowels varied systematically according to the speaking styles. The clear speech showed higher spectral energy of the vowels than that of the conversational speech while the high-pitched voice did the same over the low-pitched voice. In addition, front and back vowel groups showed different spectral characteristics. Secondly, there was no statistically significant difference between B1 and B2 in the speaking styles. B1 was generally lower than B2 when reflecting the source spectrum and radiation effect. However, there was a statistically significant difference in B2 between the front and back vowel groups. The author concluded that spectral characteristics reflect speaking styles systematically while bandwidths measured at a few formant frequency points do not reveal style differences properly. Further studies would be desirable to examine how people would evaluate different sets of synthetic vowels with spectral characteristics or with bandwidths modified.

A Max-Flow-Based Similarity Measure for Spectral Clustering

  • Cao, Jiangzhong;Chen, Pei;Zheng, Yun;Dai, Qingyun
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.311-320
    • /
    • 2013
  • In most spectral clustering approaches, the Gaussian kernel-based similarity measure is used to construct the affinity matrix. However, such a similarity measure does not work well on a dataset with a nonlinear and elongated structure. In this paper, we present a new similarity measure to deal with the nonlinearity issue. The maximum flow between data points is computed as the new similarity, which can satisfy the requirement for similarity in the clustering method. Additionally, the new similarity carries the global and local relations between data. We apply it to spectral clustering and compare the proposed similarity measure with other state-of-the-art methods on both synthetic and real-world data. The experiment results show the superiority of the new similarity: 1) The max-flow-based similarity measure can significantly improve the performance of spectral clustering; 2) It is robust and not sensitive to the parameters.

Estimation on the Power Spectral Densities of Daily Instantaneous Maximum Fluctuation Wind Velocity (변동풍속의 파워 스펙트럴 밀도에 관한 평가)

  • Oh, Jong Seop
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2017
  • Wind turbulence data is required for engineering calculations of gust speeds, mean and fluctuating loading. Spectral densities are required as input data for methods used in assessing dynamic response. This study is concerned with the estimation of daily instantaneous maximum wind velocity in the meteorological major cities (selected each 6 points) during the yearly 1987-2016.12.1. The purpose of this paper is to present the power spectral densities of the daily instantaneous maximum wind velocity. In the processes of analysis, used observations data obtained at Korea Meteorological Adminstration(KMA), it is assumed as a random processes. From the analysis results, in the paper estimated power spectral densities function(Blunt model) shows a very closed with von Karman and Solari's spectrum models.

Telemetry Performance Enhancement Based on Spectral Efficient Retransmission (주파수 효율적 재전송 기반 원격측정 성능 향상)

  • Park, Chung-woon;Park, Hyo Sub
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.429-436
    • /
    • 2017
  • Since the telemetry performance using the time-delayed data dissipates the wireless channel resources, we propose the spectral efficient retransmission scheme in this paper. In the proposed scheme, the telemetry data is retransmitted based on triggered memory to improve the spectral efficiency. The proposed scheme minimizes the error caused by multipath fading, antenna pattern as well as the error caused by the flight events. In the flight simulation data, we show the proposed scheme improves the telemetry performance based on spectral efficient retransmission.

Noisy Band Removal Using Band Correlation in Hyperspectral lmages

  • Huan, Nguyen Van;Kim, Hak-Il
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.263-270
    • /
    • 2009
  • Noise band removal is a crucial step before spectral matching since the noise bands can distort the typical shape of spectral reflectance, leading to degradation on the matching results. This paper proposes a statistical noise band removal method for hyperspectral data using the correlation coefficient between two bands. The correlation coefficient measures the strength and direction of a linear relationship between two random variables. Considering each band of the hyperspectral data as a random variable, the correlation between two signal bands is high; existence of a noisy band will produce a low correlation due to ill-correlativeness and undirected ness. The unsupervised k-nearest neighbor clustering method is implemented in accordance with three well-accepted spectral matching measures, namely ED, SAM and SID in order to evaluate the validation of the proposed method. This paper also proposes a hierarchical scheme of combining those measures. Finally, a separability assessment based on the between-class and the within-class scatter matrices is followed to evaluate the applicability of the proposed noise band removal method. Also, the paper brings out a comparison for spectral matching measures. The experimental results conducted on a 228-band hyperspectral data show that while the SAM measure is rather resistant, the performance of SID measure is more sensitive to noise.

Vegetation Change Detection in the Sihwa Embankment using Multi-Temporal Satellite Data (다중시기 위성영상을 이용한 시화 방조제 내만 식생변화탐지)

  • Jeong, Jong-Chul;Suh, Young-Sang;Kim, Sang-Wook
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.373-378
    • /
    • 2006
  • The western coast of South Korea is famous for its large and broad tidal lands. Nevertheless, land reclamation, which has been conducted on a large scale, such as Sihwa embankment construction project has accelerated coastal environmental changes in the embankment inland. For monitoring of environmental change, vegetation change detecting of the embankment inland were carried out and field survey data compared with Landsat TM, ETM+, IKONOS, and EOC satellite remotely sensed data. In order to utilize multi-temporal remotely sensed images effectively, all data set with pixel size were analyzed by same geometric correction method. To detect the tidal land vegetation change, the spectral characteristics and spatial resolution of Landsat TM and ETM+ images were analyzed by SMA(spectral mixture analysis). We obtained the 78.96% classification accuracy and Kappa index 0.2376 using March 2000 Landsat data. The SMA(spectral mixture analysis) results were considered with comparing of vegetation seasonal change detection method.

A New Method for Hyperspectral Data Classification

  • Dehghani, Hamid.;Ghassemian, Hassan.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.637-639
    • /
    • 2003
  • As the number of spectral bands of high spectral resolution data increases, the capability to detect more detailed classes should also increase, and the classification accuracy should increase as well. Often, it is impossible to access enough training pixels for supervise classification. For this reason, the performance of traditional classification methods isn't useful. In this paper, we propose a new model for classification that operates based on decision fusion. In this classifier, learning is performed at two steps. In first step, only training samples are used and in second step, this classifier utilizes semilabeled samples in addition to original training samples. At the beginning of this method, spectral bands are categorized in several small groups. Information of each group is used as a new source and classified. Each of this primary classifier has special characteristics and discriminates the spectral space particularly. With using of the benefits of all primary classifiers, it is made sure that the results of the fused local decisions are accurate enough. In decision fusion center, some rules are used to determine the final class of pixels. This method is applied to real remote sensing data. Results show classification performance is improved, and this method may solve the limitation of training samples in the high dimensional data and the Hughes phenomenon may be mitigated.

  • PDF

Correlation Analysis with Vegetation Indices and Vegetation-Endmembers From Airborne Hyperspectral Data in Forest Area (산림지역의 항공기 탑재 하이퍼스펙트럴 영상에 대한 식생-Endmember와 식생지수의 상관 분석)

  • Kim, Tae-Woo;We, Gwang-Jae;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.52-65
    • /
    • 2012
  • The net biomass accumulation (or net primary production, NPP) and gross primary production (GPP) have closely related with carbon accumulations(or carbon exchange) in vegetation. There are many approaches to estimate biomass using remote sensing techniques. The vegetation indices (VIs) can be a methodology to estimate biomass which assumes total chlorophyll contents. Various VIs were characterized with difference development conditions as vegetation species, input datasets. The hyperspectral data have also different spatial/spectral resolutions for aerial surveying. Additionally they need particular spectral bands selection difficulty to calculate the VIs. The objective of this study is to evaluate the correlations with airborne hyperspectral data (compact airborne spectrographic imager, CASI) and spectral unmixing model (or spectral mixture analysis, SMA) to characterize vegetation indices in forest area. The spectral mixture analysis was used to model the spectral purity of each pixel as an endmember. The endmembers are the fraction components derived from hyperspectral data through the SMA. In this study, we choose three endmembers represented vegetation pixels in the hyperspectral data. These endmembers were compared with 9 VIs by the Pearson's correlation coefficient. The results show MTVI1 and TVI have same correlation coefficient with 0.877. The MCARI, especially has very high relationship with vegetation endmembers as 0.9061 at less vegetation and soil distributed site. The MTVI1 and TVI have high correlations with the vegetation endmembers as 0.757 in whole test sites.