• Title/Summary/Keyword: spectral changes

Search Result 427, Processing Time 0.026 seconds

Melatonin Suppression under LED Lighting Focused on Spectral Power Distribution Differences

  • Hong, Seong-Kwan;Kim, Kyoung-Sil;Kim, In-Tae;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.7-17
    • /
    • 2015
  • Changes in melatonin concentration levels by differences in CCT of white LED light focused on Spectral Power Distribution (SPD) differences compared to the same CCT of conventional fluorescent light were analyzed. For this, melatonin concentration levels in saliva samples were taken over four different experiments at seven-day intervals. In 71.4% of participants, it was confirmed that melatonin concentration is suppressed by exposure to light, and a slight difference was observed by different CCTs. In addition, Experiment II with a high CCT was relatively high in terms of the melatonin suppression rate compared to Experiment III. A key finding was the possibility that different SPDs under a particular CCT of white LED light compared to the same CCT of conventional fluorescent light could have the same effect on the melatonin suppression.

Characteristics of electroencephalogram signatures in sedated patients induced by various anesthetic agents

  • Choi, Byung-Moon
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.4
    • /
    • pp.241-251
    • /
    • 2017
  • Devices that monitor the depth of hypnosis based on the electroencephalogram (EEG) have long been commercialized, and clinicians use these to titrate the dosage of hypnotic agents. However, these have not yet been accepted as standard monitoring devices for anesthesiology. The primary reason is that the use of these monitoring devices does not completely prevent awareness during surgery, and the development of these devices has not taken into account the neurophysiological mechanisms of hypnotic agents, thus making it possible to show different levels of unconsciousness in the same brain status. An alternative is to monitor EEGs that are not signal processed with numerical values presented by these monitoring devices. Several studies have reported that power spectral analysis alone can distinguish the effects of different hypnotic agents on consciousness changes. This paper introduces the basic concept of power spectral analysis and introduces the EEG characteristics of various hypnotic agents that are used in sedation.

Analysis of Digital Water Color for Light Fishing Grounds (디지털 시각화를 이용한 집어등 어장의 수심별 수색분석)

  • Sokjin Choi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.1
    • /
    • pp.88-97
    • /
    • 2024
  • The underwater color environment was assessed by conducting color calculations based on underwater spectral irradiance measurements at various depths. Changes in the distribution of underwater spectral irradiance values between 1 and 3 m, exhibited similar trends in areas Stn. 1, 5, and 6. Likewise, changes between 5 and 20 m displayed comparable patterns in areas Stn. 1, 2, 4, and 6. Color values for each observed area fell between 0.14 and 0.26 (x-values) and 0.2 and 0.36 (y-values), with the y-values exhibiting a variation 1-3 times greater than the x-values. Color a* and b* values ranged from a maximum of -17 and -6 to a minimum of -63 and -30, respectively. By classifying fishing grounds based on observed variations, Stn. 1, 9, Stn. 2, 3, Stn. 7, 8 and Stn. 4, 5, 6 were grouped independently. Particularly, Stn. 5, 6, 7, and 8 were categorized into distinct groups that could be visually differentiated, especially when considering the significant changes in color a* as the water depth increased from 10 to 20 m. Tokyo Bay were classified into different color groups, and Wakayama Prefecture offshore was classified into the same color group as the surveyed fishing grounds.

The Effects of Tramadol on Electroencephalographic Spectral Parameters and Analgesia in Rats

  • Jang, Hwan-Soo;Jang, Il-Sung;Lee, Maan-Gee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.191-198
    • /
    • 2010
  • The effects of different doses of tramadol on analgesia and electroencephalographic (EEG) spectralparameters were compared in rats. Saline or tramadol 5, 10, 20 or 40 mg/kg was administered. The degree of analgesia was evaluated by tail-flick latency, and the degree of seizure was measured using numerical seizure score (NSS). Additionally, band powers, median power frequency and spectral edge frequency 95 were measured to quantify the EEG response. All doses of tramadol produced spike-wave discharge. Tramadol significantly and dose-dependently increased the analgesia, but these effects did not correspond with the changes in the EEG spectral parameters. NSS significantly increased in the Tramadol 20 and 40 mg/kg treatment groups compared to the Control and TRA5 groups, and two rats given 40 mg/kg had convulsions. In conclusion, tramadol dose-dependently increased the analgesic effect, and the 10 mg/kg dose appears to be a reliable clinical dose for analgesia in rats, but dose-dependent increases in analgesia and seizure severity did not correlate with EEG spectral parameters.

Vegetation Change Detection in the Sihwa Embankment using Multi-Temporal Satellite Data (다중시기 위성영상을 이용한 시화 방조제 내만 식생변화탐지)

  • Jeong, Jong-Chul;Suh, Young-Sang;Kim, Sang-Wook
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.373-378
    • /
    • 2006
  • The western coast of South Korea is famous for its large and broad tidal lands. Nevertheless, land reclamation, which has been conducted on a large scale, such as Sihwa embankment construction project has accelerated coastal environmental changes in the embankment inland. For monitoring of environmental change, vegetation change detecting of the embankment inland were carried out and field survey data compared with Landsat TM, ETM+, IKONOS, and EOC satellite remotely sensed data. In order to utilize multi-temporal remotely sensed images effectively, all data set with pixel size were analyzed by same geometric correction method. To detect the tidal land vegetation change, the spectral characteristics and spatial resolution of Landsat TM and ETM+ images were analyzed by SMA(spectral mixture analysis). We obtained the 78.96% classification accuracy and Kappa index 0.2376 using March 2000 Landsat data. The SMA(spectral mixture analysis) results were considered with comparing of vegetation seasonal change detection method.

Connection of spectral pattern of carbohydrate molecular structure to alteration of nutritional properties of coffee by-products after fermentation

  • Samadi;Xin Feng;Luciana Prates;Siti Wajizah;Zulfahrizal;Agus Arip Munawar;Weixian Zhang;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1398-1407
    • /
    • 2024
  • Objective: The objective of this study was to determine internal structure spectral profile of by-products from coffee processing that were affected by added-microorganism fermentation duration in relation to truly absorbed feed nutrient supply in ruminant system. Methods: The by-products from coffee processing were fermented using commercial fermentation product, consisting of various microorganisms: for 0 (control), 7, 14, 21, and 28 days. In this study, carbohydrate-related spectral profiles of coffee by-products were correlated with their chemical and nutritional properties (chemical composition, total digestible nutrient, bioenergy values, carbohydrate sub-fractions and predicted degradation and digestion parameters as well as milk value of feed). The vibrational spectra of coffee by-products samples after fermentation for 0 (control), 7, 14, 21, and 28 days were determined using a JASCO FT/IR-4200 spectroscopy coupled with accessory of attenuated total reflectance (ATR). The molecular spectral analyses with univariate approach were conducted with the OMNIC 7.3 software. Results: Molecular spectral analysis parameters in fermented and non-fermented by-products from coffee processing included structural carbohydrate, cellulosic compounds, non-structural carbohydrates, lignin compound, CH-bending, structural carbohydrate peak1, structural carbohydrate peak2, structural carbohydrate peak3, hemicellulosic compound, non-structural carbohydrate peak1, non-structural carbohydrate peak2, non-structural carbohydrate peak3. The study results show that added-microorganism fermentation induced chemical and nutritional changes of coffee by-products including carbohydrate chemical composition profiles, bioenergy value, feed milk value, carbohydrate subfractions, estimated degradable and undegradable fractions in the rumen, and intestinal digested nutrient supply in ruminant system. Conclusion: In conclusion, carbohydrate nutrition value changes by added-microorganism fermentation duration were in an agreement with the change of their spectral profile in the coffee by-products. The studies show that the vibrational ATR-FT/IR spectroscopic technique could be applied as a rapid analytical tool to evaluate fermented by-products and connect with truly digestible carbohydrate supply in ruminant system.

Mastitis Diagnostics by Near-infrared Spectra of Cows milk, Blood and Urine Using SIMCA Classification

  • Tsenkova, Roumiana;Atanassova, Stefka
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1247-1247
    • /
    • 2001
  • Constituents of animal biofluids such as milk, blood and urine contain information specifically related to metabolic and health status of the ruminant animals. Some changes in composition of biofluids can be attributed to disease response of the animals. Mastitis is a major problem for the global dairy industry and causes substantial economic losses from decreasing milk production and reducing milk quality. The purpose of this study was to investigate potential of NIRS combined with multivariate analysis for cow's mastitis diagnosis based on NIR spectra of milk, blood and urine. A total of 112 bulk milk, urine and blood samples from 4 Holstein cows were analyzed. The milk samples were collected from morning milking. The urine samples were collected before morning milking and stored at -35$^{\circ}C$ until spectral analysis. The blood samples were collected before morning milking using a catheter inserted into the carotid vein. Heparin was added to blood samples to prevent coagulation. All milk samples were analyzed for somatic cell count (SCC). The SCC content in milk was used as indicator of mastitis and as quantitative parameter for respective urine and blood samples collected at same time. NIR spectra of blood and milk samples were obtained by InfraAlyzer 500 spectrophotometer, using a transflectance mode. NIR spectra of urine samples were obtained by NIR System 6500 spectrophotometer, using 1 mm sample thickness. All samples were divided into calibration set and test set. Class variable was assigned for each sample as follow: healthy (class 1) and mastitic (class 2), based on milk SCC content. SIMCA was implemented to create models of the respective classes based on NIR spectra of milk, blood or urine. For the calibration set of samples, SIMCA models (model for samples from healthy cows and model for samples from mastitic cows), correctly classified from 97.33 to 98.67% of milk samples, from 97.33 to 98.61% of urine samples and from 96.00 to 94.67% of blood samples. From samples in the test set, the percent of correctly classified samples varied from 70.27 to 89.19, depending mainly on spectral data pretreatment. The best results for all data sets were obtained when first derivative spectral data pretreatment was used. The incorrect classified samples were 5 from milk samples,5 and 4 from urine and blood samples, respectively. The analysis of changes in the loading of first PC factor for group of samples from healthy cows and group of samples from mastitic cows showed, that separation between classes was indirect and based on influence of mastitis on the milk, blood and urine components. Results from the present investigation showed that the changes that occur when a cow gets mastitis influence her milk, urine and blood spectra in a specific way. SIMCA allowed extraction of available spectral information from the milk, urine and blood spectra connected with mastitis. The obtained results could be used for development of a new method for mastitis detection.

  • PDF

Raman Detection of Protein Interfacial Conformations

  • Jang, Mi-Jin;Cho, Il-Young;Callahan, Patricia
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.352-355
    • /
    • 1997
  • The surface adsorbed protein conformations onto the vaccine adjuvants were observed with a Raman spectroscopy by using the maximum adsorption conditions described previously. The adsorbed state Raman vibrational spectra and subsequent spectral analysis display no conformational changes for BSA or IgG relative to their native species in solution.

  • PDF

Spectral Backward Radiation Profile (주파수 대역별 후방복사 프로파일)

  • Kim, Hak-Joon;Kwon, Sung-Duk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.362-367
    • /
    • 2005
  • Ultrasonic backward radiation profile is frequency-dependent when the incident region has deptional gradient of acoustical properties or multi-layers. Until now, we have measured the profiles of principal frequencies of an used transducers so that it was not easy to characterize the frequency dependence of the SAW(surface acoustic wave) from the backward radiation profile. We tried to measure the spectral backward radiation profiles using DFP(digital filer package) in a Lecroy DSO(digital storage oscilloscope). The measured spectral profiles showed that the steel specimen of #1200 surface treatment have 2% SAW velocity dispersion of the loaded case and the severly rusty steel specimen have the very big changes in the shape and pattern of the spectral profile. It is concluded that the spectral backward radiation profiles could be very effective tool to evaluate the frequency dependence of surface area.

Application of Landsat images to Snow Cover Changes by Volcanic Activities at Mt. Villarrica and Mt. Llaima, Chile

  • Kim, Jeong-Cheol;Kim, Dae-Hyun;Park, Sung-Hwan;Jung, Hyung-Sup;Shin, Han-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.341-350
    • /
    • 2014
  • Landsat images can monitor the snow-covered Earth surface variations with the ground resolution of 30m and the multi-spectral bands in the visible, NIR, SWIR and TIR spectral regions for the last 30 years. The Southern Volcanic Zone (SVZ) of Chile consists of many volcanoes, and all of the volcanoes are covered with snow at the top of mountain. Snow cover area in southern province of the SVZ of Chile (37 to $46^{\circ}S$) have been influenced by significant frontal retreats as well as eruptive activities. In this study, we have investigated the changes of the snow-cover area and snow-line elevation at Mt. Villarrica and Mt. Llaima, Chile from three Landsat images acquired on Feb. 1990, 2005 and 2011. The snow-cover areas are 13.42, 26.75 and $21.60km^2$ at Mt. Villarrica in 1990, 2005 and 2011, respectively, and 3.82, 25.12 and $8.89km^2$ at Mt. Llaima in 1990, 2005 and 2011, respectively. The snow-line elevations are 1871, 1738 and 1826m at Mt. Villarrica in 1990, 2005 and 2011, respectively, and 2007, 1822 and 1818m at Mt. Llaima in 1990, 2005 and 2011, respectively. The results indicate that both of the snow-cover and snow-line changes are strongly related with the volcanic activity change. The results demonstrate that the snow-cover area and snow-line elevation changes can be used as an indicator of the volcanic activity at Mt. Villarrica and Mt. Llaima, Chile.