DOI QR코드

DOI QR Code

Characteristics of electroencephalogram signatures in sedated patients induced by various anesthetic agents

  • Choi, Byung-Moon (Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2017.11.27
  • Accepted : 2017.12.07
  • Published : 2017.12.31

Abstract

Devices that monitor the depth of hypnosis based on the electroencephalogram (EEG) have long been commercialized, and clinicians use these to titrate the dosage of hypnotic agents. However, these have not yet been accepted as standard monitoring devices for anesthesiology. The primary reason is that the use of these monitoring devices does not completely prevent awareness during surgery, and the development of these devices has not taken into account the neurophysiological mechanisms of hypnotic agents, thus making it possible to show different levels of unconsciousness in the same brain status. An alternative is to monitor EEGs that are not signal processed with numerical values presented by these monitoring devices. Several studies have reported that power spectral analysis alone can distinguish the effects of different hypnotic agents on consciousness changes. This paper introduces the basic concept of power spectral analysis and introduces the EEG characteristics of various hypnotic agents that are used in sedation.

Keywords

References

  1. Brazier MA. The Effect of Drugs on the Electroencephalogram of Man. Clin Pharmacol Ther 1964; 5: 102-16. https://doi.org/10.1002/cpt196451102
  2. Millett D. Hans Berger: from psychic energy to the EEG. Perspect Biol Med 2001; 44: 522-42. https://doi.org/10.1353/pbm.2001.0070
  3. Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KF, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A 2013; 110: E1142-51. https://doi.org/10.1073/pnas.1221180110
  4. Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med 2010; 363: 2638-50. https://doi.org/10.1056/NEJMra0808281
  5. Davis MH, Coleman MR, Absalom AR, Rodd JM, Johnsrude IS, Matta BF, et al. Dissociating speech perception and comprehension at reduced levels of awareness. Proc Natl Acad Sci U S A 2007; 104: 16032-7. https://doi.org/10.1073/pnas.0701309104
  6. Bevan JC, Veall GR, Macnab AJ, Ries CR, Marsland C. Midazolam premedication delays recovery after propofol without modifying involuntary movements. Anesth Analg 1997; 85: 50-4.
  7. Williams ST, Conte MM, Goldfine AM, Noirhomme Q, Gosseries O, Thonnard M, et al. Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury. Elife 2013; 2: e01157. https://doi.org/10.7554/eLife.01157
  8. McCarthy MM, Brown EN, Kopell N. Potential network mechanisms mediating electroencephalographic beta rhythm changes during propofol-induced paradoxical excitation. J Neurosci 2008; 28: 13488-504. https://doi.org/10.1523/JNEUROSCI.3536-08.2008
  9. Cote CJ, Goudsouzian NG, Liu LM, Dedrick DF, Rosow CE. The dose response of intravenous thiopental for the induction of general anesthesia in unpremedicated children. Anesthesiology 1981; 55: 703-5. https://doi.org/10.1097/00000542-198155060-00023
  10. Gray AT, Krejci ST, Larson MD. Neuromuscular blocking drugs do not alter the pupillary light reflex of anesthetized humans. Arch Neurol 1997; 54: 579-84. https://doi.org/10.1001/archneur.1997.00550170055014
  11. Feshchenko VA, Veselis RA, Reinsel RA. Propofolinduced alpha rhythm. Neuropsychobiology 2004; 50: 257-66. https://doi.org/10.1159/000079981
  12. Tinker JH, Sharbrough FW, Michenfelder JD. Anterior shift of the dominant EEG rhytham during anesthesia in the Java monkey: correlation with anesthetic potency. Anesthesiology 1977; 46: 252-9. https://doi.org/10.1097/00000542-197704000-00005
  13. Clark DL, Rosner BS. Neurophysiologic effects of general anesthetics. I. The electroencephalogram and sensory evoked responses in man. Anesthesiology 1973; 38: 564-82. https://doi.org/10.1097/00000542-197306000-00011
  14. Hemmings HC, Jr., Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci 2005; 26: 503-10. https://doi.org/10.1016/j.tips.2005.08.006
  15. Bai D, Pennefather PS, MacDonald JF, Orser BA. The general anesthetic propofol slows deactivation and desensitization of GABA(A) receptors. J Neurosci 1999; 19: 10635-46. https://doi.org/10.1523/JNEUROSCI.19-24-10635.1999
  16. Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical Electroencephalography for Anesthesiologists: Part I: Background and Basic Signatures. Anesthesiology 2015; 123: 937-60. https://doi.org/10.1097/ALN.0000000000000841
  17. Akeju O, Pavone KJ, Westover MB, Vazquez R, Prerau MJ, Harrell PG, et al. A comparison of propofol- and dexmedetomidine-induced electroencephalogram dynamics using spectral and coherence analysis. Anesthesiology 2014; 121: 978-89. https://doi.org/10.1097/ALN.0000000000000419
  18. Tsukagoshi E, Kawaguchi M, Shinomiya T, Yoshikawa M, Kawano T, Okubo M, et al. Diazepam enhances production of diazepam-binding inhibitor (DBI), a negative saliva secretion regulator, localized in rat salivary gland. J Pharmacol Sci 2011; 115: 221-9. https://doi.org/10.1254/jphs.10282FP
  19. Ostuni MA, Issop L, Peranzi G, Walker F, Fasseu M, Elbim C, et al. Overexpression of translocator protein in inflammatory bowel disease: potential diagnostic and treatment value. Inflamm Bowel Dis 2010; 16: 1476-87. https://doi.org/10.1002/ibd.21250
  20. Wojna V, Guerrero L, Guzman J, Cotto M. Effect of flumazenil on electroencephalographic patterns induced by midazolam. P R Health Sci J 2000; 19: 353-6.
  21. Feshchenko VA, Veselis RA, Reinsel RA. Comparison of the EEG effects of midazolam, thiopental, and propofol: the role of underlying oscillatory systems. Neuropsychobiology 1997; 35: 211-20. https://doi.org/10.1159/000119347
  22. Brown EN, Purdon PL, Van Dort CJ. General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu Rev Neurosci 2011; 34: 601-28. https://doi.org/10.1146/annurev-neuro-060909-153200
  23. Sinner B, Graf BM. Ketamine. Handb Exp Pharmacol 2008: 313-33.
  24. Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52: 998-1007. https://doi.org/10.1001/archpsyc.1995.03950240016004
  25. Seamans J. Losing inhibition with ketamine. Nat Chem Biol 2008; 4: 91-3. https://doi.org/10.1038/nchembio0208-91
  26. Cavazzuti M, Porro CA, Biral GP, Benassi C, Barbieri GC. Ketamine effects on local cerebral blood flow and metabolism in the rat. J Cereb Blood Flow Metab 1987; 7: 806-11. https://doi.org/10.1038/jcbfm.1987.138
  27. Vollenweider FX, Leenders KL, Oye I, Hell D, Angst J. Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol 1997; 7: 25-38. https://doi.org/10.1016/S0924-977X(96)00042-9
  28. Jorm CM, Stamford JA. Actions of the hypnotic anaesthetic, dexmedetomidine, on noradrenaline release and cell firing in rat locus coeruleus slices. Br J Anaesth 1993; 71: 447-9. https://doi.org/10.1093/bja/71.3.447
  29. Nacif-Coelho C, Correa-Sales C, Chang LL, Maze M. Perturbation of ion channel conductance alters the hypnotic response to the alpha 2-adrenergic agonist dexmedetomidine in the locus coeruleus of the rat. Anesthesiology 1994; 81: 1527-34. https://doi.org/10.1097/00000542-199412000-00029
  30. Huupponen E, Maksimow A, Lapinlampi P, Sarkela M, Saastamoinen A, Snapir A, et al. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand 2008; 52: 289-94. https://doi.org/10.1111/j.1399-6576.2007.01537.x
  31. Sherin JE, Elmquist JK, Torrealba F, Saper CB. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 1998; 18: 4705-21. https://doi.org/10.1523/JNEUROSCI.18-12-04705.1998
  32. Morairty S, Rainnie D, McCarley R, Greene R. Disinhibition of ventrolateral preoptic area sleep-active neurons by adenosine: a new mechanism for sleep promotion. Neuroscience 2004; 123: 451-7. https://doi.org/10.1016/j.neuroscience.2003.08.066
  33. Faulconer A, Pender JW, Bickford RG. The influence of partial pressure of nitrous oxide on the depth of anesthesia and the electro-encephalogram in man. Anesthesiology 1949; 10: 601-9. https://doi.org/10.1097/00000542-194909000-00010
  34. Foster BL, Liley DT. Nitrous oxide paradoxically modulates slow electroencephalogram oscillations: implications for anesthesia monitoring. Anesth Analg 2011; 113: 758-65. https://doi.org/10.1213/ANE.0b013e318227b688
  35. Yamamura T, Fukuda M, Takeya H, Goto Y, Furukawa K. Fast oscillatory EEG activity induced by analgesic concentrations of nitrous oxide in man. Anesth Analg 1981; 60: 283-8.
  36. Avramov MN, Shingu K, Mori K. Progressive changes in electroencephalographic responses to nitrous oxide in humans: a possible acute drug tolerance. Anesth Analg 1990; 70: 369-74. https://doi.org/10.1213/00000539-199002001-00369
  37. Hagihira S, Takashina M, Mori T, Mashimo T. The impact of nitrous oxide on electroencephalographic bicoherence during isoflurane anesthesia. Anesth Analg 2012; 115: 572-7.

Cited by

  1. What Do We Know about the Use of EEG Monitoring during Equine Anesthesia: A Review vol.9, pp.18, 2017, https://doi.org/10.3390/app9183678
  2. Preliminary Study of the Use of Root with Sedline® EEG Monitoring for Assessment of Anesthesia Depth in 6 Horses vol.10, pp.3, 2017, https://doi.org/10.3390/app10031050
  3. Monitoring of anesthetic depth and EEG band power using phase lag entropy during propofol anesthesia vol.20, pp.1, 2017, https://doi.org/10.1186/s12871-020-00964-5