• Title/Summary/Keyword: spectral bands

Search Result 495, Processing Time 0.026 seconds

An Adequate Band Selection for Vegetation Index of CASI-1500 Airborne Hyperspectral Imagery Using Image Differencing and Spectral Derivative (차연산과 분광미분을 이용한 항공 초분광영상의 식생지수 산출 적절밴드 선택)

  • Kim, Tae-Woo;We, Gwang-Jae;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.16-28
    • /
    • 2013
  • Recently the various applications and spectral indices development of airborne hyperspectral imagery(A-HSI) has been increased. Especially the vegetation indices (VIs) were used to verify stress and vigor of vegetation. The VIs needs two or more spectral bands selectively to calculate as NIR(near infrared) and red wavelength. The A-HIS has specific band characteristics as narrow, continues and many. The A-HIS has narrow, continues and many specific band characteristics. That could be make it confuse which of bands could be explained for appropriate vegetation characteristics. If the A-HIS bands is not the same the wavelength with VIs' development band setting, then it need a selection adequate for spectral characteristics of target vegetation. Therefore we set 4 substitute bands for NIR and red wavelength respectively and calculated two VIs combined with substitute bands such as NDVI(normalized difference vegetation index) and MSRI(modified simple ratio index). To consider the variation of each VIs, we adapted the image differencing method of change detection technique. Also, we used spectral derivative to identify appropriate bands for spectral characteristics of digital forest cover type map. The result of adequate bands for two VIs selected red #3 as 680.2nm and NIR #2 as 801.7nm. This wavelength was good for any forest type in low variations.

STATISTICAL NOISE BAND REMOVAL FOR SURFACE CLUSTERING OF HYPERSPECTRAL DATA

  • Huan, Nguyen Van;Kim, Hak-Il
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.111-114
    • /
    • 2008
  • The existence of noise bands may deform the typical shape of the spectrum, making the accuracy of clustering degraded. This paper proposes a statistical approach to remove noise bands in hyperspectral data using the correlation coefficient of bands as an indicator. Considering each band as a random variable, two adjacent signal bands in hyperspectral data are highly correlative. On the contrary, existence of a noise band will produce a low correlation. For clustering, the unsupervised ${\kappa}$-nearest neighbor clustering method is implemented in accordance with three well-accepted spectral matching measures, namely ED, SAM and SID. Furthermore, this paper proposes a hierarchical scheme of combining those measures. Finally, a separability assessment based on the between-class and the within-class scatter matrices is followed to evaluate the applicability of the proposed noise band removal method. Also, the paper brings out a comparison for spectral matching measures.

  • PDF

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong;Ryu, Chan Seok;Kim, Seong Heon;Jun, Sae Rom;Jang, Si Hyeong;Park, Jun Woo;Sarkar, Tapash Kumar;Song, Hye young
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.138-147
    • /
    • 2018
  • Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.

Statistical Approach to Noisy Band Removal for Enhancement of HIRIS Image Classification

  • Huan, Nguyen Van;Kim, Hak-Il
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.195-200
    • /
    • 2008
  • The accuracy of classifying pixels in HIRIS images is usually degraded by noisy bands since noisy bands may deform the typical shape of spectral reflectance. Proposed in this paper is a statistical method for noisy band removal which mainly makes use of the correlation coefficients between bands. Considering each band as a random variable, the correlation coefficient measures the strength and direction of a linear relationship between two random variables. While the correlation between two signal bands is high, existence of a noisy band will produce a low correlation due to ill-correlativeness and undirectedness. The application of the correlation coefficient as a measure for detecting noisy bands is under a two-pass screening scheme. This method is independent of the prior knowledge of the sensor or the cause resulted in the noise. The classification in this experiment uses the unsupervised k-nearest neighbor algorithm in accordance with the well-accepted Euclidean distance measure and the spectral angle mapper measure. This paper also proposes a hierarchical combination of these measures for spectral matching. Finally, a separability assessment based on the between-class and within-class scatter matrices is followed to evaluate the performance.

  • PDF

Noisy Band Removal Using Band Correlation in Hyperspectral lmages

  • Huan, Nguyen Van;Kim, Hak-Il
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.263-270
    • /
    • 2009
  • Noise band removal is a crucial step before spectral matching since the noise bands can distort the typical shape of spectral reflectance, leading to degradation on the matching results. This paper proposes a statistical noise band removal method for hyperspectral data using the correlation coefficient between two bands. The correlation coefficient measures the strength and direction of a linear relationship between two random variables. Considering each band of the hyperspectral data as a random variable, the correlation between two signal bands is high; existence of a noisy band will produce a low correlation due to ill-correlativeness and undirected ness. The unsupervised k-nearest neighbor clustering method is implemented in accordance with three well-accepted spectral matching measures, namely ED, SAM and SID in order to evaluate the validation of the proposed method. This paper also proposes a hierarchical scheme of combining those measures. Finally, a separability assessment based on the between-class and the within-class scatter matrices is followed to evaluate the applicability of the proposed noise band removal method. Also, the paper brings out a comparison for spectral matching measures. The experimental results conducted on a 228-band hyperspectral data show that while the SAM measure is rather resistant, the performance of SID measure is more sensitive to noise.

Cloud Removal Using Gaussian Process Regression for Optical Image Reconstruction

  • Park, Soyeon;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.327-341
    • /
    • 2022
  • Cloud removal is often required to construct time-series sets of optical images for environmental monitoring. In regression-based cloud removal, the selection of an appropriate regression model and the impact analysis of the input images significantly affect the prediction performance. This study evaluates the potential of Gaussian process (GP) regression for cloud removal and also analyzes the effects of cloud-free optical images and spectral bands on prediction performance. Unlike other machine learning-based regression models, GP regression provides uncertainty information and automatically optimizes hyperparameters. An experiment using Sentinel-2 multi-spectral images was conducted for cloud removal in the two agricultural regions. The prediction performance of GP regression was compared with that of random forest (RF) regression. Various combinations of input images and multi-spectral bands were considered for quantitative evaluations. The experimental results showed that using multi-temporal images with multi-spectral bands as inputs achieved the best prediction accuracy. Highly correlated adjacent multi-spectral bands and temporally correlated multi-temporal images resulted in an improved prediction accuracy. The prediction performance of GP regression was significantly improved in predicting the near-infrared band compared to that of RF regression. Estimating the distribution function of input data in GP regression could reflect the variations in the considered spectral band with a broader range. In particular, GP regression was superior to RF regression for reproducing structural patterns at both sites in terms of structural similarity. In addition, uncertainty information provided by GP regression showed a reasonable similarity to prediction errors for some sub-areas, indicating that uncertainty estimates may be used to measure the prediction result quality. These findings suggest that GP regression could be beneficial for cloud removal and optical image reconstruction. In addition, the impact analysis results of the input images provide guidelines for selecting optimal images for regression-based cloud removal.

Evaluation of SWIR bands utilization of Worldview-3 satellite imagery for mineral detection (광물탐지를 위한 Worldview-3 위성영상의 SWIR 밴드 활용성 평가)

  • Kim, Sungbo;Park, Honglyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.203-209
    • /
    • 2021
  • With the recent development of satellite sensor technology, high-spatial-resolution imagery of various spectral wavelength bands have become possible. Worldview-3 satellite sensor provides panchromatic images with high-spatial-resolution and VNIR (Visible Near InfraRed) and SWIR (ShortWave InfraRed) bands with low-spatial-resolution, so it can be used in various fields such as defense, environment, and surveying. In this study, mineral detection was performed using Worldview-3 satellite imagery. In order to effectively utilize the VNIR and SWIR bands of the Worldview-3 satellite image, the sharpening technique was applied to the spatial resolution of the panchromatic image. To confirm the utility of SWIR bands for mineral detection, mineral detection using only VNIR bands was performed and comparatively evaluated. As the mineral detection technique, SAM (Spectral Angle Mapper), a representative similarity technique, was applied, and the pixels detected as minerals were selected by applying an empirical threshold to the analysis result. Quantitative evaluation was performed using reference data on the results of similarity analysis to evaluate the accuracy of mineral detection. As a result of the accuracy evaluation, the detection rate and false detection rate of mineral detecting using SWIR bands were calculated to be 0.882 and 0.011, respectively, and the results using only VNIR bands were 0.891 and 0.037, respectively. It was found that the detection rate when the SWIR bands were additionally used was lower than that when only the VNIR bands were used. However, it was found that the false detection rate was significantly reduced, and through this, it was possible to confirm the applicability of SWIR bands in mineral detection.

AKARI OBSERVATIONS OF THE INTERSTELLAR MEDIUM

  • Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.187-193
    • /
    • 2012
  • AKARI has 4 imaging bands in the far-infrared (FIR) and 9 imaging bands that cover the near-infrared (NIR) to mid-infrared (MIR) contiguously. The FIR bands probe the thermal emission from sub-micron dust grains, while the MIR bands observe emission from stochastically-heated very small grains and the unidentified infrared (UIR) band emissions from carbonaceous materials that contain aromatic and aliphatic bonds. The multi-band characteristics of the AKARI instruments are quite efficient to study the spectral energy distribution of the interstellar medium, which always shows multi-component nature, as well as its variations in the various environments. AKARI also has spectroscopic capabilities. In particular, one of the onboard instruments, Infrared Camera (IRC), can obtain a continuous spectrum from 2.5 to $13{\mu}m$ with the same slit. This allows us to make a comparative study of the UIR bands in the diffuse emission from the 3.3 to $11.3{\mu}m$ for the first time. The IRC explores high-sensitivity spectroscopy in the NIR, which enables the study of interstellar ices and the UIR band emission at $3.3-3.5{\mu}m$ in various objects. Particularly, the UIR bands in this spectral range contain unique information on the aromatic and aliphatic bonds in the band carriers. This presentation reviews the results of AKARI observations of the interstellar medium with an emphasis on the observations of the NIR spectroscopy.

3-D High Resolution Ultrasonic Transmission Tomography and Soft Tissue Differentiation

  • Kim Tae-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.1
    • /
    • pp.55-63
    • /
    • 2005
  • A novel imaging system for High-resolution Ultrasonic Transmission Tomography (HUTT) and soft tissue differentiation methodology for the HUTT system are presented. The critical innovation of the HUTT system includes the use of sub-millimeter transducer elements for both transmitter and receiver arrays and multi-band analysis of the first-arrival pulse. The first-arrival pulse is detected and extracted from the received signal (i.e., snippet) at each azimuthal and angular location of a mechanical tomographic scanner in transmission mode. Each extracted snippet is processed to yield a multi-spectral vector of attenuation values at multiple frequency bands. These vectors form a 3-D sinogram representing a multi-spectral augmentation of the conventional 2-D sinogram. A filtered backprojection algorithm is used to reconstruct a stack of multi-spectral images for each 2-D tomographic slice that allow tissue characterization. A novel methodology for soft tissue differentiation using spectral target detection is presented. The representative 2-D and 3-D HUTT images formed at various frequency bands demonstrate the high-resolution capability of the system. It is shown that spherical objects with diameter down to 0.3㎜ can be detected. In addition, the results of soft tissue differentiation and characterization demonstrate the feasibility of quantitative soft tissue analysis for possible detection of lesions or cancerous tissue.

The Clustering Application of Spectral Characteristics of Rock Samples from Ulsan (울산 지역 암석 시료의 스펙트럼 특성과 이의 Clustering 응용)

  • 박종남;김지훈
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.2
    • /
    • pp.115-133
    • /
    • 1990
  • Study was made on the spectral characteristics of rock samples including bentonites collected from the northern Ulsan area. The geology of the area consists mainly of sediments of the Kyongsang Series and Bulguksa granite, the Tertiary volcanics, andesites and tuffs. Relative reflectances of meshed samples(2.5~10mm) to BaSO$_4$ are measured at 6 Landsat TM spectral windows (excluding the thermal band) with HHRR, and their reflection charactristics were analysed. In addition, three different data selection schemes including the Eulidean distance, multiple regression, and PCA weight methods were applied to the 30 TM ratio channels, derived from the above 6 bands. The selected data sets were subject to two unsupervised classification techniques(FA and ISODATA) in order to compare the effectiveness for classification of particularly bentonite from others. As a result, in ISODATA analysis the multiple regression model shows the best, followed by the Euliean distances one. The PCA weight model seems to show some confusion. In FA, though difficult for quantitative analysis, the best still seems to be the regression model. Among ratio bands, rations of band 7 or 5 against other bands represent the best contribution in classification of bentonites from others.