Seo, Young-Wook;Ahn, Chi Kook;Lee, Hoonsoo;Park, Eunsoo;Mo, Changyeun;Cho, Byoung-Kwan
Journal of Biosystems Engineering
/
제41권1호
/
pp.51-59
/
2016
Purpose: This study examined the performance of two spectroscopy methods and multivariate classification methods to discriminate viable pepper seeds from their non-viable counterparts. Methods: A classification model for viable seeds was developed using partial least square discrimination analysis (PLS-DA) with Fourier transform near-infrared (FT-NIR) and Raman spectroscopic data in the range of $9080-4150cm^{-1}$ (1400-2400 nm) and $1800-970cm^{-1}$, respectively. The datasets were divided into 70% to calibration and 30% to validation. To reduce noise from the spectra and compare the classification results, preprocessing methods, such as mean, maximum, and range normalization, multivariate scattering correction, standard normal variate, and $1^{st}$ and $2^{nd}$ derivatives with the Savitzky-Golay algorithm were used. Results: The classification accuracies for calibration using FT-NIR and Raman spectroscopy were both 99% with first derivative, whereas the validation accuracies were 90.5% with both multivariate scattering correction and standard normal variate, and 96.4% with the raw data (non-preprocessed data). Conclusions: These results indicate that FT-NIR and Raman spectroscopy are valuable tools for a feasible classification and evaluation of viable pepper seeds by providing useful information based on PLS-DA and the threshold value.
본 연구에서는 일반적으로 잘 알려진 기저 세포암 검출을 위한 간단한 전처리 방법을 제안하였다. 전처리 과정은 half Hanning 윈도우와 함께 데이터를 클리핑하고 PCA(principal components analysis)를 이용하여 차원을 감소하였다. Half Hanning 윈도우는 $1650cm^{-1}$ 피크 부근의 크기를 낮춤으로써 음성 오류율을 줄여 분류 성능을 향상시켰다. 이 실험에서 사용한 MAP(maximum a posteriori), KNN (k-nearest neighbor), PNN(probabilistic neural network), MLP(multilayer perceptron), SVM(support vector machine)와 MSE(minimum squared error)의 분류결과는 제안한 방법이 효과적임을 입증하고 있다. KNN 분류방법은 216개 라만 스펙트럼에 대한 분류실험에서 민감도가 약 97.3%로 제안한 윈도우를 적용한 이 실험에서 기저 세포암 검출 성능이 가장 많이 개선되었다.
본 연구는 고해상도 자료와 하이퍼스펙트럴 자료를 혼용하여 하와이 화산 국립공원 내 해안 지역의 식생을 분류하고자 하였다. 연구지역에 주로 나타나는 식생은 3종의 초본(broomsedge, natal redtop, and pili)과 작은 관목 등으로 대표되는 비초본으로 구분된다. 분류 기법으로는 unsupervised classification과 supervised classification을 결합한 하이브리드법을 이용하여 전체적으로 3단계 분류과정을 적용하였다. 첫째로는, IKONOS 고해상 위성자료를 이용하여, 식생 및 비식생지역을 unsupervised classification법을 통해 분류하였다. 두 번째로는, minimum noise fraction(MNF) transformation을 이용하여 AVIRIS하이퍼스펙트럴 자료로부터 주성분을 추출하여 자료를 압축하는 과정을 거쳤다. 20미터 해상도를 가진 AVIRIS 픽셀들은 대부분 용암면과 식생면으로부터 반사된 복사신호가 혼합되어 있기때문에, 용암과 식생의 지표피복 비율에 따른 선형모형을 적용하여 용암면이 갖는 반사 신호를 각 픽셀로부터 제거하였다. 최종적으로, 각 픽셀에 대하여, 식생피복 비율에 비례하는 AVIRIS 하이퍼스펙트럴 자료의 식생성분을 토대로 maximum likelihood algorithm에 따라 supervised classification법을 적용하여 초지 및 관목으로 대표되는 지표식생을 분류하였다.
To overcome the limit of morphological method for classification of herbal drug, a novel method to discriminate its origin using pyrolysis mass spectrometry-multivariate analysis was developed. This method was applied successfully to Scutellaria baicalensis Georgi, one of the most popular herbal drug in oriental countries. The ethylacetate soluble fractions were prepared by sonication from pulverized roots of S. baicalensis which were collected from various regions including Korea and China, and subjected to direct insertion probe (DIP) mass spectrometry to achieve mass spectra of pyrolizates of extracts. The probe temperature was elevated from $30^{\circ}C$ to $320^{\circ}C$ at increasing rate $64^{\circ}C/min$, and the average mass spectrum calculated from total ion chromatography (TIC) was obtained. The relative peak intensities versus m/z were subjected to SAS program, and the training set (9 from Korea origin and 22 from China origin) was clustered two groups as its origin. In the test set, 11 samples among total 13 test sample were successfully classified according to their origin by developed method with accuracy of 85%.
International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
/
제4권1호
/
pp.51-55
/
2001
The characteristics of elastic waves emanating from crack initiation in 2024 and 5052 aluminum alloys subject to static and fatigue loading are investigated through laboratory experiments. The objective of the study is to determine difference in the properties of the signals generated from static and fatigue tests and also to examine if the sources of the waves could be identified from the temporal and spectral characteristics of the acoustic emission (AE) waveforms. The signals are recoded using non-resonant, flat, broadband transducers attached to the surface of the alloy specimens. The time dependence and power spectra of the signals recorded during the tests were examined and classified according to their special features. Three distinct types of signals were observed. The waveforms and their power spectra were found to be dependent on the material and the type of fracture associated with the signals. Analysis of the waveforms indicated that some signals could be attributed to plastic deformation associated with static tests. The potential application of the approach in health monitoring of aging aircraft structures using a network of surface mounted broadband sensors is discussed.
It is difficult to classify tidal flat surface that is composed of a mixture of mud, sand, water and microphytobenthos. We used a Linear Spectral Unmixing (LSU) method for effectively classifying the tidal flat surface characteristics within a pixel. This study aims at 1) detecting algal mat using LSU in the Saemangeum tidal flats, 2) determining a suitable end-member selection method in tidal flats, and 3) find out a habitual characteristics of algal mat. Two types of end-member were built; one is a reference end-member derived from field spectrometer measurements and the other image end-member. A field spectrometer was used to measure spectral reflectance, and a spectral library was accomplished by shape difference of spectra, r.m.s. difference of spectra, continuum removal and Mann-Whitney U-test. Reference end-members were extracted from the spectral library. Image end-members were obtained by applying Principle Component Analysis (PCA) to an image. The LSU method was effective to detect microphytobenthos, and successfully classified the intertidal zone into algal mat, sediment, and water body components. The reference end-member was slightly more effective than the image end-member for the classification. Fine grained upper tidal flat is generally considered as a rich habitat for algal mat. We also identified unusual microphytobenthos that inhabited coarse grained lower tidal flats.
The grade analysis of lead-zinc ore is the basis for the optimal development and utilization of deposits. In this study, a method combining Prompt Gamma Neutron Activation Analysis (PGNAA) technology and machine learning is proposed for lead-zinc mine borehole logging, which can identify lead-zinc ores of different grades and gangue in the formation, providing real-time grade information qualitatively and semi-quantitatively. Firstly, Monte Carlo simulation is used to obtain a gamma-ray spectrum data set for training and testing machine learning classification algorithms. These spectra are broadened, normalized and separated into inelastic scattering and capture spectra, and then used to fit different classifier models. When the comprehensive grade boundary of high- and low-grade ores is set to 5%, the evaluation metrics calculated by the 5-fold cross-validation show that the SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naive Bayes) and RF (Random Forest) models can effectively distinguish lead-zinc ore from gangue. At the same time, the GNB model has achieved the optimal accuracy of 91.45% when identifying high- and low-grade ores, and the F1 score for both types of ores is greater than 0.9.
To develop a nondestructive quality evaluation technique of fruits, a K-mean algorism is applied to near infrared (NIR) spectroscopy of apples. The K-mean algorism is one of neural network partition methods and the goal is to partition the set of objects O into K disjoint clusters, where K is assumed to be known a priori. The algorism introduced by Macqueen draws an initial partition of the objects at random. It then computes the cluster centroids, assigns objects to the closest of them and iterates until a local minimum is obtained. The advantage of using neural network is that the spectra at the wavelengths having absorptions against chemical bonds including C-H and O-H types can be selected directly as input data. In conventional multiple regression approaches, the first wavelength is selected manually around the absorbance wavelengths as showing a high correlation coefficient between the NIR $2^{nd}$ derivative spectrum and Brix value with a single regression. After that, the second and following wavelengths are selected statistically as the calibration equation shows a high correlation. Therefore, the second and following wavelengths are selected not in a NIR spectroscopic way but in a statistical way. In this research, the spectra at the six wavelengths including 900, 904, 914, 990, 1000 and 1016nm are selected as input data for K-mean analysis. 904nm is selected because the wavelength shows the highest correlation coefficients and is regarded as the absorbance wavelength. The others are selected because they show relatively high correlation coefficients and are revealed as the absorbance wavelengths against the chemical structures by B. G. Osborne. The experiment was performed with two phases. In first phase, a reflectance was acquired using fiber optics. The reflectance was calculated by comparing near infrared energy reflected from a Teflon sphere as a standard reference, and the $2^{nd}$ derivative spectra were used for K-mean analysis. Samples are intact 67 apples which are called Fuji and cultivated in Aomori prefecture in Japan. In second phase, the Brix values were measured with a commercially available refractometer in order to estimate the result of K-mean approach. The result shows a partition of the spectral data sets of 67 samples into eight clusters, and the apples are classified into samples having high Brix value and low Brix value. Consequently, the K-mean analysis realized the classification of apples on the basis of the Brix values.
Park, Se-Yeong;Kim, Jong-Chan;Kim, Jong-Hwa;Yang, Sang-Yun;Kwon, Ohkyung;Yeo, Hwanmyeong;Cho, Kyu-Chae;Choi, In-Gyu
Journal of the Korean Wood Science and Technology
/
제45권2호
/
pp.202-212
/
2017
This study was to establish the interrelation between chemical compositions and near infrared (NIR) spectra for the classification on distinguishability of domestic gymnosperms. Traditional wet chemistry methods and infrared spectral analyses were performed. In chemical compositions of five softwood species including larch (Larix kaempferi), red pine (Pinus densiflora), Korean pine (Pinus koraiensis), cypress (Chamaecyparis obtusa), and cedar (Cryptomeria japonica), their extractives and lignin contents provided the major information for distinction between the wood species. However, depending on the production region and purchasing time of woods, chemical compositions were different even though in same species. Especially, red pine harvested from Naju showed the highest extractive content about 16.3%, whereas that from Donghae showed about 5.0%. These results were expected due to different environmental conditions such as sunshine amount, nutrients and moisture contents, and these phenomena were also observed in other species. As a result of the principal component analysis (PCA) using NIR between five species (total 19 samples), the samples were divided into three groups in the score plot based on principal component (PC) 1 and principal component (PC) 2; group 1) red pine and Korean pine, group 2) larch, and group 3) cypress and cedar. Based on the chemical composition results, it was concluded that extractive content was highly relevant to wood classification by NIR analysis.
동반논문 (I)에서는 국내 지반특성에 적합하도록 국내 내진설계기준이 개선되어야 한다는 결론을 얻었다. 본 논문에서는 우수한 지반분류 방법을 찾기 위하여 상부 토층 30m의 평균 전단파속도$(V_{S30})$, 지반의 고유주기$(T_G)$ 및 기반암 깊이를 이용한 지반분류 방법에 대하여 심도있게 검토하였다. 증폭계수$(F_a,\;F_v)$의 표준편차, 해석결과의 평균 스펙트럼 가속도와 재산정된 응답스펙트럼을 비교한 결과 각각의 방법에서 큰 차이가 발생하지 않아 특정한 방법이 우수하다고 판단하기 힘들었다. 그러나, $T_G$를 이용한 방법에서 RRS 값의 증폭구간이 좁은 구간에 집중되는 경향을 보여 지진시 유사한 거동특성을 나타내는 지반을 같은 지반그룹으로 분류할 수 있는 장점이 있었다. 또한, 증폭계수와 $T_G$의 상관관계를 나타내는 추세선의 경우, $V_{S30}$ 방법 보다 입력 가속도의 증가에 따른 지반의 비선형성 효과를 더욱 명확하게 나타낼 수 있었다. 마지막으로, $V_{S30}$을 이용하여 지반을 분류할 경우 기반암이 30m 보다 얕은 곳에 존재하는 경우에도 무조건 심도 30m까지 기반암의 전단파속도를 가정하여 계산해야 하나, $T_G$를 이용할 경우 이러한 불확실성을 제거할 수 있어 우수한 방법으로 판단된다. 본 논문에서는 지반의 고유주기를 이용한 방법을 기반암 깊이가 얕은 국내지반특성에 적합한 지반분류 방법으로 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.