• Title/Summary/Keyword: spectra classification

Search Result 137, Processing Time 0.027 seconds

The Statistical Model of Fourier Acceleration Spectra according to Seismic Intensities for Earthquakes in Korea (국내 지진의 진도별 가속도 푸리에스펙트럼 통계모델)

  • Yun, Kwan-Hee;Pakr, Dong-Hee;Park, Se-Moon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.11-25
    • /
    • 2009
  • A method of instrumentally estimating the seismic intensity (MMI) based on Fourier Acceleration Spectrum, which is the so-called 'FAS MMI method' of Sokolov and Wald (2002), was considered for its applicability to Korea. In order to implement the FAS MMI method, the empirical models of mean (m) and standard deviation (${\sigma}$) for Korea were derived for MMI ${\leq}$ IV according to individual seismic intensity by using the site-consistent horizontal FAS of 580 records from 65 isoseismal maps prepared based on the reported MMI of Korea Meteorological Administration. The site-consistent FAS at a site were obtained by correcting the observed FAS for the difference of the site amplification function relative to that of the target site of Class D station (Yun and Suh, 2007) which was evaluated to be a representative site for the generic soil profile of Korea. The FAS m model for MMI ${\leq}$ IV follows the overall linear relation in log space according to seismic intensities, featuring the FAS mean model for MMI = IV similar to that of the global model of Sokolov and Wald (2002). The ${\sigma}$-values of the FAS model are found to be greater than those of the global model for MMI ${\geq}$ V, while significantly lower than those of the global model for MMI = IV.

Analysis of Non-Point Pollution Sources in the Taewha River Area Using the Hyper-Sensor Information (하이퍼센서 정보를 이용한 태화강지역의 비점오염원 분석)

  • KIM, Yong-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.56-70
    • /
    • 2017
  • In this study, multi-image information for the central Taewha River basin was used to develop and analyze a distribution map of non-point pollution sources. The data were collected using a hyper-sensor (image), aerial photography, and a field spectro-radiometer. An image correction process was performed for each image to develop an ortho-image. In addition, the spectra from the field spectro-radiometer measurements were analyzed for each classification to create land cover and distribution maps of non-point pollutant sources. In the western region of the Taewha River basin, where most of the forest and agricultural land is distributed, the distribution map showed generated loads for BOD($kg/km^2{\times}day$) of 1.0 - 2.3, for TN($kg/km^2{\times}day$) of 0.06 - 9.44, and for TP($kg/km^2{\times}day$) of 0.03 - 0.24, which were low load distributions. In the eastern region where urbanization is in progress, the BOD, TN, and TP were 85.9, 13.69, and 2.76, respectively and these showed relatively high load distributions when the land use was classified by plot.

Direct Determination of Soil Nitrate Using Diffuse Reflectance Fourier Transform Spectroscopy (DRIFTS) (중적외선 분광학을 이용한 토양 내의 질산태 질소 정량분석)

  • Choe, Eunyoung;Kim, Kyoung-Woong;Hong, Suk Young;Kim, Ju-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.267-272
    • /
    • 2008
  • Mid-infrared (MIR) spectroscopy, particularly Fourier transform infrared spectroscopy (FTIR), has emerged as an important analytical tool in quantification as well as identification of multi-atomic inorganic ions such as nitrate. In the present study, the possibility of quantifying soil nitrate via diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) without change of a sample phase or with least treated samples was examined. Four types of soils were spectrally characterized in terms of unique bands of soil contents and interferences with nitrate bands in the range of $2000-1000cm^{-1}$. In order to reduce the effects of soil composition on calibration model for nitrate, spectra transformed to the 1st order derivatives were used in the partial least squared regression (PLSR) model and the classification procedure associated with input soil types was involved in calibration system. PLSR calibration models for each soil type provided better performance results ($R^2$>0.95, RPD>6.0) than the model considering just one type of soil as a standard.

Development of Nondestructive Sorting Method for Brown Bloody Eggs Using VIS/NIR Spectroscopy (가시광 및 근적외선 전투과 스펙트럼을 이용한 갈색 혈란 비파괴선별 방법 개발)

  • Lee, Hong-Seock;Kim, Dae-Yong;Kandpal, Lalit Mohan;Lee, Sang-Dae;Mo, Changyeun;Hong, Soon-Jung;Cho, Byoung-Kwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.31-37
    • /
    • 2014
  • The aim of this study was the non-destructive evaluation of bloody eggs using VIS/NIR spectroscopy. The bloody egg samples used to develop the sorting mode were produced by injecting chicken blood into the edges of egg yolks. Blood amounts of 0.1, 0.7, 0.04, and 0.01 mL were used for the bloody egg samples. The wavelength range for the VIS/NIR spectroscopy was 471 to 1154 nm, and the spectral resolution was 1.5nm. For the measurement system, the position of the light source was set to $30^{\circ}$, and the distance between the light source and samples was set to 100 mm. The minimum exposure time of the light source was set to 30 ms to ensure the fast sorting of bloody eggs and prevent heating damage of the egg samples. Partial least squares-discriminant analysis (PLS-DA) was used for the spectral data obtained from VIS/NIR spectroscopy. The classification accuracies of the sorting models developed with blood samples of 0.1, 0.07, 0.04, and 0.01 mL were 97.9%, 98.9%, 94.8%, and 86.45%, respectively. In this study, a novel nondestructive sorting technique was developed to detect bloody brown eggs using spectral data obtained from VIS/NIR spectroscopy.

Composition Classification of Korea Ancient Glasses by Using Raman Spectroscopy (라만분광분석법을 이용한 한국 고대 유리의 조성 분류)

  • Sim, Woo Seok;Kim, Eun A;Lim, Soo Yeong;Kim, Hyung Min;Kim, Gyu Ho
    • Journal of Conservation Science
    • /
    • v.38 no.2
    • /
    • pp.117-123
    • /
    • 2022
  • In this study, investigated the possibility of quantitatively and qualitatively analyzing Korean ancient glasses via Raman Spectroscopy. We subjected four categories of Korean traditional glasses, namely, lead-BaO, lead, potash, and soda glasses (3, 3, 10, and 10 pieces, respectively), to this analytical technique. The results showed significant differences between the stretching and bending Raman vibration regions corresponding to these different Korean ancient glass types. Specifically, the stretching vibration regions corresponding to lead-BaO and lead glasses showed peaks at 1040 and 1000 cm-1, respectively; the stretching vibration region of normal glass appears at 1100 cm-1. The bending vibration regions corresponding to potash and soda glass showed Raman peaks at 490 and 560 cm-1, respectively. Furthermore, the Raman spectra of the lead and lead-BaO glasses showed red shifts, which depended on the amount of PbO present. Thus, our findings highlighted the possibility of quantitatively determining the amount of PbO, a major component of lead glasses, via Raman Spectroscopy.

BEEF MEAT TRACEABILITY. CAN NIRS COULD HELP\ulcorner

  • Cozzolino, D.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1246-1246
    • /
    • 2001
  • The quality of meat is highly variable in many properties. This variability originates from both animal production and meat processing. At the pre-slaughter stage, animal factors such as breed, sex, age contribute to this variability. Environmental factors include feeding, rearing, transport and conditions just before slaughter (Hildrum et al., 1995). Meat can be presented in a variety of forms, each offering different opportunities for adulteration and contamination. This has imposed great pressure on the food manufacturing industry to guarantee the safety of meat. Tissue and muscle speciation of flesh foods, as well as speciation of animal derived by-products fed to all classes of domestic animals, are now perhaps the most important uncertainty which the food industry must resolve to allay consumer concern. Recently, there is a demand for rapid and low cost methods of direct quality measurements in both food and food ingredients (including high performance liquid chromatography (HPLC), thin layer chromatography (TLC), enzymatic and inmunological tests (e.g. ELISA test) and physical tests) to establish their authenticity and hence guarantee the quality of products manufactured for consumers (Holland et al., 1998). The use of Near Infrared Reflectance Spectroscopy (NIRS) for the rapid, precise and non-destructive analysis of a wide range of organic materials has been comprehensively documented (Osborne et at., 1993). Most of the established methods have involved the development of NIRS calibrations for the quantitative prediction of composition in meat (Ben-Gera and Norris, 1968; Lanza, 1983; Clark and Short, 1994). This was a rational strategy to pursue during the initial stages of its application, given the type of equipment available, the state of development of the emerging discipline of chemometrics and the overwhelming commercial interest in solving such problems (Downey, 1994). One of the advantages of NIRS technology is not only to assess chemical structures through the analysis of the molecular bonds in the near infrared spectrum, but also to build an optical model characteristic of the sample which behaves like the “finger print” of the sample. This opens the possibility of using spectra to determine complex attributes of organic structures, which are related to molecular chromophores, organoleptic scores and sensory characteristics (Hildrum et al., 1994, 1995; Park et al., 1998). In addition, the application of statistical packages like principal component or discriminant analysis provides the possibility to understand the optical properties of the sample and make a classification without the chemical information. The objectives of this present work were: (1) to examine two methods of sample presentation to the instrument (intact and minced) and (2) to explore the use of principal component analysis (PCA) and Soft Independent Modelling of class Analogy (SIMCA) to classify muscles by quality attributes. Seventy-eight (n: 78) beef muscles (m. longissimus dorsi) from Hereford breed of cattle were used. The samples were scanned in a NIRS monochromator instrument (NIR Systems 6500, Silver Spring, MD, USA) in reflectance mode (log 1/R). Both intact and minced presentation to the instrument were explored. Qualitative analysis of optical information through PCA and SIMCA analysis showed differences in muscles resulting from two different feeding systems.

  • PDF

Metabolic Discrimination of Papaya (Carica papaya L.) Leaves Depending on Growth Temperature Using Multivariate Analysis of FT-IR Spectroscopy Data (FT-IR 스펙트럼 다변량통계분석을 이용한 파파야(Carica papaya L.)의 생육온도 변화에 따른 대사체 수준 식별)

  • Jung, Young Bin;Kim, Chun Hwan;Lim, Chan Kyu;Kim, Sung Chel;Song, Kwan Jeong;Song, Seung Yeob
    • Journal of the Korean Society of International Agriculture
    • /
    • v.31 no.4
    • /
    • pp.378-383
    • /
    • 2019
  • To determine whether FT-IR spectral analysis based on multivariate analysis for whole cell extracts can be used to discriminate papaya at metabolic level. FT-IR spectral data from leaves were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and 1,100-950 cm-1, respectively. These spectral regions were reflecting the quantitative and qualitative variations of amide I, II from amino acids and proteins (1,700-1,500 cm-1), phosphodiester groups from nucleic acid and phospholipid (1,500-1,300 cm-1) and carbohydrate compounds (1,100-950 cm-1). The result of PCA analysis showed that papaya leaves could be separated into clusters depending on different growth temperature. In this case, showed discrimination confirmed according to metabolite content of growth condition from papaya. And PLS-DA analysis also showed more clear discrimination pattern than PCA result. Furthermore, these metabolic discrimination systems could be applied for rapid selection and classification of useful papaya cultivars.