• Title/Summary/Keyword: speckle interferometry

Search Result 162, Processing Time 0.035 seconds

Non-destructive Inspection of Semiconductor Package by Laser Speckle Interferometry (레이저 스페클 간섭법을 이용한 반도체 패키지의 비파괴검사)

  • Kim, Koung-Suk;Yang, Kwang-Young;Kang, Ki-Soo;Choi, Jung-Gu;Lee, Hang-Seo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.81-86
    • /
    • 2005
  • This paper proposes a non-destructive ESPI technique to quantitatively evaluate defects inside a semiconductor package. The inspection system consists of the ESPI system, a thermal loading system and an adiabatic chamber. The technique is high feasibility for non-destructive testing of a semiconductor and overcomes the weaknesses of previous techniques, such as time-consumption and difficult quantitative evaluation. Most defects are classified as delamination defects, resulting from the insufficient adhesive strength between layers and from non-homogeneous heat spread. Ninety percent of the tested samples had delamination defects which originated at the corner of the chip and nay be related to heat spread design.

Application of Phase-shifting Method using fourier Transform to Measurement of In-plane Displacement by Speckle Interferometry

  • Kim, Myung-Soo;Baek, Tae-Hyun;Morimoto, Yoshiharu;Fujigaki, Motoharu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.171-177
    • /
    • 2005
  • Phase-shifting method using Fourier transform (PSM/FT) has been applied to measurement of in-plane displacement of a specimen. Thirty-two interference fringe patterns each of which has different phase of ${\pi}/16$ radian have been gathered from a specimen with in-plane displacement. Low-pass filtering by 2-D Fourier transform is used to suppress spatial noise of the fringe patterns. ${\alpha}-directional$ Fourier transform for PSM/FT is performed by use of the low-pass filtered 32 fringe patterns. Two kinds of specimens are used for experiment. One is a rectangular steel plate and the other one is a rectangular steel plate containing a circular hole at the center. In-plane displacement of each specimen is measured by PSM/FT, and calculated by finite element method (ANSYS) for comparison. The results are quite comparable, so that PSM/FT can be applied to measurement of in-plane displacement.

Quantitative Evaluation of Delamination Inside of Composite Materials by ESPI (ESPI를 이용한 복합재료 박리결함의 정량평가)

  • Kim, Koung-Suk;Yang, Kwang-Young;Kang, Ki-Soo;Ji, Chang-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.246-252
    • /
    • 2004
  • Electronic speckle pattern interferometry (ESPI) for quantitative evaluation of delaminations inside of a composite material plate is described. Delaminations caused by the impact on composite materials are difficult to detect visual inspection and ultrasonic testing due to non-homeogenous structure. This paper proposes the quantitative evaluation technique of the defects made in the composite plates by impact load. Artificial defects are introduced inside of the composite plate for the development of a reliable ESPI inspection technique. Real defects produced by impact tester are inspected and compared with the results of visual inspection which shows a good agreement within 5% error.

The Study on Measurement of In-Plane Displacement in Mechanical Structure applied to Washing Machine using ESPI (ESPI를 이용한 세탁기 적용 기계 구조물의 면내변위 측정에 관한 연구)

  • Lee, Hac-Ju;Kim, Sang-Tea;Choi, Eun-Oh;Chang, Seog-Weon
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.108-113
    • /
    • 2001
  • Recently, the mechanical structures applied to many industrial products, especially in electronic products, appear to be miniaturized and complicated. This trend makes it difficult to analyze the stress distribution of those mechanical structures and generates new challenges for precise measurement of strain. Therefore, generally most of those cases largely depend on the finite element analysis. But the development of optical metrology which has the capability of non-contact, full-field and precise measurement makes it possible to solve these measuring problems. Among the optical measurement techniques, the electronic speckle pattern interferometry (ESPI) has been developed and considered as one of the most useful tools for measuring displacement and deformation. But the shortage of recognition and difficulties of measurement have limited its industrial applications in spite of its excellent capabilities. Therefore in this study, in order to enhance the industrial application of ESPI, the measurement of in-plane displacement of mechanical structure with ESPI, which is applied to washing machine and cannot be measured by strain gauges, was performed. And the verification of validity of FEA results was also done.

  • PDF

A Study on the Vibration Characteristics of Symmetry, Asymmetry Laminated Composite Materials by using Time-Average ESPI (시간평균 ESPI를 이용한 대칭.비대칭 적층 복합재료의 진동 특성 비교에 관한 연구)

  • Hong Kyung-Min;Ryu Weon-Jae;Kang Young-Jung;Kang Shin-Jae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.259-260
    • /
    • 2006
  • The ESPI(Electronic Speckle Pattern Interferometry) is a real time, full-field, non-destructive optical measurement technique. In this study, ESPI is proposed for the purpose of vibration analysis for new material, composite material. Composite materials have various complicated characteristics according to the ply materials, ply orientations, ply stacking sequences and boundary conditions. Therefore, it is difficult to analysis composite materials. For efficient use of composite materials in engineering applications the dynamic behavior, that is, natural frequencies, nodal patterns should be informed. If use Time-Average ESPI, can analyze vibration characteristic of composite material by real time easily. This study manufactured laminated composite of symmetry, asymmetry two kinds that is consisted of CFRP(Carbon Fiber Reinforced Plastics) and shape of test piece is rectangular form.

  • PDF

Research about ESPI System Algorithm Development that Use Modulating Laser (Modulating Laser를 이용한 ESPI System algorithm 개발에 관한 연구)

  • Kim, Seong-Jong;Kang, Young-June;Park, Nak-Kyu;Lee, Dong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.65-72
    • /
    • 2009
  • Laser interferometry is widely used as a measuring system in many fields because of its high resolution and its ability to measure a broad area in real-time all at once. In conventional laser interferometry, for example out-of-plane ESPI (Electronic Speckle Pattern Interferometry), in plane ESPI, shearography and holography, it uses PZT or other components as a phase shift instrumentation to extract 3-D deformation data, vibration mode and others. However, in most cases PZT has some disadvantages, which include nonlinear errors and limited time of use. In the present study, a new type of laser interferometry using a laser diode is proposed. Using Laser Diode Sinusoidal Phase Modulating (LD-SPM) interferometry, the phase modulation can be directly modulated by controlling the laser diode injection current thereby eliminating the need for PZT and its components. This makes the interferometry more compact. This paper reports on a new approach to the LD (Laser Diode) Modulating interferometry that involves four-frame phase shift method. This study proposes a four-frame phase mapping algorithm, which was developed to have a guaranteed application, to stabilize the system in the field and to be a user-friendly GUI. In this paper, the theory for LD wavelength modulation and sinusoidal phase modulation of LD modulating interferometry is shown. Using modulating laser and research of measurement algorithm does comparison with existent ESPI measurement algorithm. Algorithm measures using GPIB communication through most LabVIEW 8.2. GPIB communication does alteration through PC. Transformation of measurement object measures through modulating laser algorithm that develops. Comparison of algorithm of modulating laser developed newly with existent PZT algorithm compares transformation price through 3-D. Comparison of 4-frame phase mapping, unwrapping, 3-D is then introduced.

A Study on Residual Stress Measurements by Using Laser Speckle Interferometry (레이저 간섭법을 이용한 잔류응력 측정 방법에 대한 연구)

  • Rho, Kyung-Wan;Kang, Young-June;Hong, Seong-Jin;Kang, Hyung-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.1
    • /
    • pp.16-24
    • /
    • 1999
  • Residual stress is one of the causes which make defects in engineering components and materials. And interest in the measurement of residual stress exists in many industries. There are commonly used methods by which residual stresses are currently measured. But these methods have a little demerits. time consumption and other problems. Therefore we devised a new experimental technique to measure residual stress in materials with a combination of laser speckle pattern interferometry, finite element method and spot heating. The speckle pattern interferometer measures in-plane deformations while the heating provides for very localized stress relief. FEM is used for determining heat temperature and other parameters. The residual stresses are determined by the amount of strain that is measured subsequent to the heating and cool-down of the region being interrogated. A simple model is presented to provide a description of the method. In this paper, the ambiguity problem for the fringe patterns has solved by a phase shifting method.

  • PDF

Study on the Out-of-Plane Deformation Measurement Condition through Comparison Photosensitivity (광감도 비교를 통한 면외 변형 측정 조건에 대한 연구)

  • Kim, Hyun Ho;Kang, Chan Geun;Lee, Hyun Jun;Jung, Hyun Chul;Kim, Kyeong Suk;Hong, Chung Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.807-813
    • /
    • 2015
  • In the present study, an interferometer system, which integrates the laser sensitivity control technique based on the theory of electronic speckle pattern interferometry, one of non-contact non-destructive analysis methods, was developed. This interferometry system receives an image from CCD cameras for each reference and object, and compares the photosensitivity of the object and reference images from imagification. For the purpose of this study, the photosensitivity of object and reference light is measured with power meters, and the amount of light was controlled with an ND filter with a reference light port matching photosensitivity. Using the plate specimen as the object, 0.6, 0.9, 1.2, and $1.5{\mu}m$ of out-plane deformation was made, and images were compared according to the difference in photosensitivity. After analysis, larger object deformations showed larger numbers of stripe patterns. Images became clearer and data error was reduced when the photosensitivity of object and reference light matched.

Study of Shearography Imaging for Quantity Evaluation Defects in Woven CFRP Composite Materials (직조 CFRP 복합재료 내부결함의 정량적 평가를 위한 Shearography 영상처리 기법 연구)

  • 최상우;이준현;이정호;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.211-214
    • /
    • 2001
  • Electronic Speckle Pattern Interferometry(ESPI) is one of optical technique to measure displacement precisely, uses CCD camera to show result image in real time. General ESPI system measures in-plane or out-of-plane displacement. Shearography is one of electronic speckle pattern interferometric methods which allow full-field observation of surface displacement derivatives and it is robust in vibration. The shearography provides non-contacting technique of evaluating defects nondestructively. In this study, the shearography was used to evaluate defects in Carbon Fiber Reinforced Plastic(CFRP). Various sizes of artificial defects were embedded in various depths of woven CFRP plate. Effects due to the variation of size and depth of defects were evaluated in this study.

  • PDF

Measurement of Tensile Properties of Copper Foil using Micro-ESPI Technique (마이크로 ESPI기법을 이용한 동 박막의 인장 특성 측정)

  • 김동일;허용학;기창두
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.89-96
    • /
    • 2004
  • Micro-tensile testing system, consisting of a micro tensile loading system and micro-ESPI(Electronic Speckle Pattern Interferometry) system, has been developed for measurement of micro-tensile properties of thin micro-materials. Micro-tensile loading system had a load cell with the maximum capacity of 50N and micro actuator with resolution of 4.5nm in stroke. The system was used to apply a tensile load to the micro-sized specimen. During tensile loading, the micro-ESPI system acquired interferornetric speckle patterns in the deformed specimen and measured the in-plane tensile strain. The ESPI system consisted of a CCD-camera with a lens and the window-based program developed for this experiment. Using this system, stress-strain curves for 4 kinds of electrolytic copper foil 18$\square$m thick were obtained. From these curves, tensile properties, including the elastic modulus. yielding strength and tensile strength, were determined and also values of the plastic exponent and coefficient based on Ramberg-Osgood relationship were evaluated.