• Title/Summary/Keyword: speckle interferometry

Search Result 162, Processing Time 0.027 seconds

Quantitative Evaluation of Impact Defects inside of Composite Material Plate by ESPI (ESPI를 이용한 충격손상을 받은 복합재료 내부결함의 정량평가)

  • 김경석;양광영;장호섭;지창준;윤홍석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.254-258
    • /
    • 2003
  • Electronic Speckle Pattern for quantitative evaluation of a impact defect inside of composite material plate are described. The impact on composite material makes inside delamination which is difficult to detect visual inspection and ultrasonic testing due to non-homeogenous structure. This paper proposes the quantitative evaluation technique of defects under real impact. Artificial defects are designed inside of composite plate for development of inspection technique and real defects under impact are inspected and compared with results of visual inspection.

  • PDF

Application of Shearography for Nondestructive Evaluation of Internal Defects in CFRP (CFRP에 내재된 결함의 비파괴 평가를 위한 Shearography기법 적용)

  • 최상우;이준현
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.245-251
    • /
    • 2002
  • Electronic Speckle Pattern Interferometry(ESPI) is one of optical technique to measure displacement precisely, uses CCD camera to show result image in real time. General ESPI system measures in-plane or out-of-plane displacement. Shearography is one of electronic speckle pattern interferometric methods which allow full-field observation of surface displacement derivatives and it is robust in vibration. The shearography provides non-contacting technique of evaluating defects nondestructively In this study, the shearography was used to evaluate defects in Carbon Fiber Reinforced Plastic(CFRP). Various sizes of artificial defects were embedded in various depths of woven CFRP plate. Effects due to the variation of size and depth of defects were evaluated in this study.

  • PDF

ESPI Simulation for the Vibration Modes of the Thin Right-Angled Plate (얇은 직각판의 진동 모드에 대한 ESPI 시뮬레이션)

  • 장순석
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.509-516
    • /
    • 1999
  • The ESPI (Electronic Speckle Pattern Interferometry) algorithm has been simulated to calculate vibrational modes of a thin right-angled STS304 plate. The phase transformation of the reference wave of the ESPI is carried out only one time during vibration in order to clarify ESPI speckle patterns. Two dimensional vibrational modes are calculated from one ESPI pattern before vibration onset and two ESPI patterns during vibrations but with and without the phase transformation. The ESPI harmonic results are compared with those derived from the finite element method (FEM), and they agree very well. Additionally a phase unwrapping algorithm has been newly developed to derive a displacement map from an ESPI phase map.

  • PDF

Vibration characteristics analysis on the composite laminate plate under the tensile loading by ESPI method (ESPI법에 의한 인장을 받는 복합재 평판의 진동 특성 해석)

  • 김경석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.69-73
    • /
    • 1999
  • This study discusses a non-contact optical technique, electronic speckle pattern interferometry(ESPI), that is well suited for in-plane and out-of-plane deformation measurement. AS4/PEEK[30/-30/90]s, composite laminate plate was analyzed by ESPI to determine the vibration characteristics with tensile loading and without it. vibration mode shapes are quantitatively compared with the result of numerical analysis. The experimental results agree well with those of numerical analysis. we found that when the composite laminate plate is under the tensile loading, vibration modes can be measured with high accuracy by ESPI.

  • PDF

Quantitative Measurement of Out-of-plane Deformation Using Shearography (전단간섭계를 이용한 면외변형의 정량적 계측)

  • Chang, Ho-Seob;Jung, Sung-Wook;Kim, Kyoung-Suk;Jung, Hyun-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.131-137
    • /
    • 2007
  • Electronic Speckle Pattern Interferometry(ESPI) is a common method for measuring out-of-plane deformation and in-plane deformation and applied for vibration analysis and strain/stress analysis. However, ESPI is sensitive to environmental disturbance, which provide the limitation of industrial application. On the other hand, Shearography based on shearing interferometer which is insensitive to vibration disturbance can directly measure the first derivative of out-of-plane deformation. In this paper a technique that extract out-of-plane deformation from results of shearography by numerical processing is proposed and measurement results of ESPI and Shearoraphy are compared quantitatively.

Deformation Characteristics Analysis of 3-Unit Fixed Partial Dentures by Using Electronic Speckle Pattern Interferometry (전자처리 스페클 패턴 간섭법(ESPI)을 이용한 3-유닛 고정성 국소의치의 변형특성 분석)

  • Kang, Hoo-Won;Lee, Chul-Min;Yang, Seung-Pil;Kim, Hee-Jin
    • Journal of Technologic Dentistry
    • /
    • v.35 no.1
    • /
    • pp.49-56
    • /
    • 2013
  • Purpose: The deformation characteristics induced by non-destructive stresses using piezoelectric transducer(PZT) were analyzed for 3-unit fixed partial dentures manufactured PFM, Everest(CAD/CAM) and Zirkonzahn(copy milling, MAD/MAM) by electron speckle pattern interferometery(ESPI). Methods: The ESPI analysis after loading the restoration with PZT by applying electric voltage of 900mV at the points of 10 mm above the base of the prostheses. Results: PFM and All-Ceramic Everest prostheses showed about 0.1 ${\mu}m$ while that of All- Ceramic Zirkonzahn prostheses showed 0.085 ${\mu}m$, demonstrating that Zirkonzahn displaced less. For PFM and All-Ceramic Zirkonzahn prostheses, the displacements were large at just below the loading point, while generalize displacement was shown over the loading point and weak connector areas for All-Ceramic Everest prostheses. Conclusion: We could find that the deformation characteristics induced by non-destructive stresses using PZT analyzed by ESPI were similar to the fracture strengths evaluated using universal testing machine.

Measurement of Thermal Coefficient at High Temperature by CW-Laser Speckle Photography and Image Processing (고온하의 CW 레이져 스페클 사진법과 화상처리에 의한 열팽창계수 측정에 관한 연구)

  • Kim, Gyeong-Seok;Choe, Jeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.90-99
    • /
    • 1992
  • In resent year Laser Speckle and its development have enabled surface deformation of engineering components and materials to be interferometrically examined. Laser Speckle- Pettern Interferometry Method is a very useful method for measuring In-plane components of displacement. In measuring thermal expansion coefficient, the various problems generated were established, and the measuring limitation examined. Metarial INCONEL 601 was used in experiments. Specimen was heated to the high temperature(100$0^{\circ}C$) by diong current to the direct two specimen. Then, those problems appear to the influence of back-ground radiation by the heated specimen, the influence by air turbulence, the oxidation of specimen. The color monitor and interference filter prevented the back-ground radiation by rad heat. The oxidation occuring in specimen itself was not generated by the being acid-proof excellence of material INCONEL 601. Yet, in this experiments, the serious problems are the oxidation of specimen and influence by air turbulence. By more reserching these problems forward, it is helpful that the thermal expansion coefficient of many materials is directly measured under high temperature.

  • PDF

Evaluation of Detectable Defect Size for Inner Defect of Pressure Vessel Using Laser Speckle Shearing Interferometry (레이저 스페클 전단간섭법을 이용한 압력용기 내부결함의 측정 가능한 결함 크기의 평가)

  • Kim, Kyeong-Suk;Seon, Sang-Woo;Choi, Tae-Ho;Kang, Chan-Geun;Na, Man-Gyun;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.135-140
    • /
    • 2014
  • Pressure vessels are used in various industrial fields. If a defect occurs on the inner or outer surface of a pressure vessel, it may cause a massive accident. A defect on the outer surface can be detected by visual inspection. However, a defect on the inner surface is generally impossible to detect with visual inspection. Nondestructive testing can be used to detect this type of defect. Laser speckle shearing interferometry is one nondestructive testing method that can optically detect a defect; its advantages include noncontact, full field, and real time inspection. This study evaluated the detectable size for an internal defect of a pressure vessel. The material of the pressure vessel was ASTM A53 Gr.B. The internal defect was detected when the pressure vessel was loaded by internal pressure controlled by a pneumatic system. The internal pressure was controlled from 0.2 MPa to 0.6 MPa in increments of 0.2 MPa. The results confirmed that an internal defect with a 25 % defect depth could be detected even at 0.2 MPa pressure variation.

Nondestructive Testing with Shearography (Shearography를 이용한 비파괴 검사)

  • Chang, Seog-Weon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.177-181
    • /
    • 2001
  • Nondestructive testing(NDT) is one of the fundamental tools to improve the quality of commercial and industrial products. NDT is potentially a major application of interferometry. Interferometry(ESPI, Shearography, ect) has successfully been applied in various industrial environments such as high performance aircraft, home appliance, automotive, and laminates on engine structures, etc. Today's industry demands high performance components with toughest mechanical features and ultimate safety standards. Especially in automotive and aircraft industry the development process focuses on tailor-made design and solutions to meet customer specifications. To reconcile economy, ligh-weight construction has become a key issue. Many companies are looking for new advanced NDT techniques to archive cost efficiency over the limitations of classical methods. ESPI and shearography allow a rapid, full field and 3D-measurement without contact. In this paper recent applications of ESPI and shearography for NDT are described. Advanced features of classical techniques are specified and new applications in material and component testing are presented.

  • PDF

Application of Laser Interferometry for Assessment of Surface Residual Stress by Determination of Stress-free State (무잔류 응력상태 결정을 통한 표면 잔류응력장 평가에의 레이저 간섭계 적용)

  • Kim, Dong-Won;Lee, Nak-Kyu;Choi, Tae-Hoon;Na, Kyong-Hoan;Kwon, Dong-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.25-30
    • /
    • 2003
  • The total relaxed stress in annealing and the thermal strain/stress were obtained from the identification of the residual stress-free state using electronic speckle pattern interferometry (ESPI). The residual stress fields in case of both single and film/substrate systems were modeled using the thermo-elastic theory and the relationship between relaxed stresses and displacements. We mapped the surface residual stress fields on the indented bulk Cu and the 0.5 ${\mu}m$ Au film by ESPI. In indented Cu, the normal and shear residual stress are distributed over -1.7 GPa to 700 MPa and -800 GPa to 600 MPa respectively around the indented point and in deposited Au film on Si wafer, the tensile residual stress is uniformly distributed on the Au film from 500 MPa to 800 MPa. Also we measured the residual stress by the x-ray diffractometer (XRD) for the verification of above residual stress results by ESPI.

  • PDF