• Title/Summary/Keyword: specimen depth

Search Result 543, Processing Time 0.029 seconds

Variation of Eddy Current Signal According to the Defect Shape, Defect Depth and Radial Load in CFRP Tube (CFRP 튜브의 결함형상.결함깊이.레이디얼 하중에 따른 와전류 신호의 변화)

  • 송삼홍;안형근;이정순;오동준;송일;김철웅
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.2004-2011
    • /
    • 2004
  • The applicability of the ultrasonic C-scan inspection is restricted due to the deterioration of mechanical properties of specimen during the test. Therefore, the aim of this research is applied to Eddy Current (EC) test substitute for the C-scan inspection in CFRP tube containing defects. This research is to evaluate the EC signals for the inspection of CFRP tube containing various circular hole defects (20% to 100% depth to the specimen thickness) using the unloading specimen and radial loading specimen. This study was considered the following points; 1) Analysis of EC signals for the inspection of saw-cut defect and circular hole defect, 2) The evaluation of defect depths and EC signals relationship. 3) Variation of EC signal owing to the radial load. In conclusions, the high frequency such as 300∼500 kHz made it possible to the inspection of 40% to 100% defects. Particularly, in case of 20% defect, the EC signal was not detected due to the noise of micro-crack and delamination. While the depth of the hole defects were decreasing, the difference of the phase angle between unloading specimen and radial loading specimen was gradually increasing.

Quantitative Evaluation of Fatigue Strength using a Surface defective Low Carbon Steel (저탄소강의 표면결개 방의 영향에 의한 피로강도의 정량적 평가)

  • 윤명진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.42-49
    • /
    • 1995
  • It is not clearly known how defects or inclusions of a low carbon steel affect a fatigue strength. We study this issue using SM15C materials. The investigation is carried out by a quantitative evaluation, and experimental findings are: (1) a fatigue limit of A series smooth specimen is 205MPa, and that of B, C, D series is 245MPa, 304MPa and 245MPa, respectively. (2) the fatigue limit varies with respects to the stress distribution I the vicinity of a defects and crack. (3) the micro hole creates a half-circular shape crack, while the hole depth is not critical to the fatigue strength, (4) considering the fatigue strength, the hole diameter is more significant than the hole depth, and (5) Fatigue limit of artificially defected specimen is lower than that of a flawless one (5-10%), however, there exist allowance size and depth of defect which don't get to influence at fatigue limit.

  • PDF

A Study on Temperature Characteristics of Various Depth using Infrared Thermography (적외선 열화상기법을 이용한 균열 깊이에 따른 온도특성에 관한 연구)

  • Jung, Ju-Yeong;Yoon, Hyuk-Jin;Cho, Hyun-Woo;Yang, Hui-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.83-89
    • /
    • 2018
  • The thermal characteristics of concrete specimens were analyzed using cement paste specimens with artificial cracks. In order to understand the temperature characteristics of the specimen depending on the crack depth, the specimen was heated and the minimum temperatures of the specimens at which cracks appear were investigated according to the crack depth. It was confirmed that the surface temperature distribution of the specimen varies depending on whether the specimen is cracked or not, because of the single and multiple reflections of the incident energy. Furthermore, as the temperature distribution of the specimen reaches a steady state, the temperature data tends to decrease with the crack depth. Through the observation of the normalized temperatures, it was found that the temperature of the specimens obtained from this experiment reached a steady state after 10 minutes. At this time, the standard deviation of the normalized temperature is around 0.01 or less, and the temperature decreases linearly with increasing crack depth. This result is considered to be closely related to the area where multiple reflections occur in the cracked region. If the correlation between the crack region and the incident energy is analyzed for various specimens, it can be applied to the diffuse reflection of the light.

A study on the J-integral and the fracture behavior of concrete (J-적분과 콘크리트 파괴거동에 관한 연구)

  • 최신호;윤요현;계해주;전철송;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.185-190
    • /
    • 2000
  • The effect of specimen thickness and notch's depth and the validity of J-integral analysis were studied on the fracture behavior of concrete. Through the 3-point bending test, the stress-deformation curves were experimentally measured. Concrete fracture toughness is calculated from stress-displacement curves. Concrete fracture toughness decreases when notch's depth is longer. So, Gf is less sensitive than JIc and Gf is more useful factor as concrete fracture toughness parameter. The values of J-integral and fracture energy increase when the breadth of concrete specimen get longer from 75mm to 150mm. Therefore, the breadth effect of specimen has to be considered in determining the concrete fracture toughness.

  • PDF

Influence of Slip Angle on Abrasion Behavior of NR/BR Vulcanizates

  • Eunji Chae;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Abrasion tests of model tire tread compounds (NR and NR/BR blend compounds) were performed at different slip angles (1° and 7°) using a laboratory abrasion tester. The abrasion behavior was investigated by analyzing the worn surface and wear particles. The abrasion spacing formed on the specimen worn at the large slip angle of 7° was significantly narrower than that at the small slip angle of 1°, while the abrasion depth for the specimen worn at 7° was lower than that at 1°. The abrasion spacing and depth tended to be narrower and lower, respectively, as the BR content increased. The abrasion patterns were clearly visible on the outside of the specimen for the slip angle of 1° but not for 7°. The wear particles had a rough surface and there were numerous micro-bumps. It was found that the crosslink density affected the abrasion patterns and morphologies of the wear particles.

Numerical simulation of wedge splitting test method for evaluating fracture behaviour of self compacting concrete

  • Raja Rajeshwari B.;Sivakumar, M.V.N.;Sai Asrith P.
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.265-273
    • /
    • 2024
  • Predicting fracture properties requires an understanding of structural failure behaviour in relation to specimen type, dimension, and notch length. Facture properties are evaluated using various testing methods, wedge splitting test being one of them. The wedge splitting test was numerically modelled three dimensionally using the finite element method on self compacting concrete specimens with varied specimen and notch depths in the current work. The load - Crack mouth opening displacement curves and the angle of rotation with respect to notch opening till failure are used to assess the fracture properties. Furthermore, based on the simulation results, failure curve was built to forecast the fracture behaviour of self-compacting concrete. The fracture failure curve revealed that the failure was quasi-brittle in character, conforming to non-linear elastic properties for all specimen depth and notch depth combinations.

Interpretation of Stress Crack Resistance of Damaged Geomembranes (손상된 지오멤브레인의 응력균열 저항성 해석)

  • Jeon, Han-Yong;Kahn, Belas Ahmed;Jang, Yeon-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.305-313
    • /
    • 2010
  • HDPE smooth and textured GMs were cut into dumbbell shape and notched where depth of the notch produced a ligament thickness of 90% to 10% of the nominal thickness of the specimen at 10% interval. Yield stress and elongation were measured of those samples and plotted on Graph. Yield stress and elongation at yield point decreases gradually as the notch depth is increased. Both installations damaged and notched GMs were used to understand stress crack behavior. Intact sample were notched in such a manner that the depth of notch produced a ligament thickness of 80% of the nominal thickness of the specimen. Installation damaged samples were not notched. Stress Crack Resistance behavior was observed using NCTL Test at $50{\pm}1^{\circ}C$ at different yield stresses immerging with pH 4 and pH 12 buffer solutions. Significant difference was observed in both cases.

  • PDF

Constraint Loss Assessment of SA508 PCVN Specimen according to Crack depth (SA508 PCVN 시편의 균열깊이에 따른 구속력 손실 평가)

  • Park, Sang-Yun;Lee, Ho-Jin;Lee, Bong-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.161-166
    • /
    • 2008
  • In general structures, cleavage fracture may develop under the low constraint condition of larger scale yielding with a shallow surface crack. However, standard procedures for fracture toughness testing require very severe restrictions of specimen geometry. So the standard fracture toughness data makes the integrity assessment irrationally conservative. In this paper, cleavage fracture toughness tests have been made on side-grooved PCVN (precracked charpy V-notch) type specimens (10 by 10 by 55 mm) with varying crack depth, The constraint effects on the crack depth ratios are quantitatively evaluated by scaling model and Weibull stress method using 3-D finite clement method, After correction of constraint loss due to shallow crack depths, the statistical size effect are also corrected according to the standard ASTM E 1921 procedure, The results snowed a good agreement in the geometry correction regardless of the crack size, while some over-corrections were observed in the corrected values of $T_0$.

  • PDF

The Effect of an Optical Clearing Agent on Tissue Prior to 1064-nm Laser Therapy

  • Youn, Jong-In
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.146-152
    • /
    • 2021
  • Background and Objectives Although lasers have been widely applied in tissue treatment, the light penetration depth in tissues is limited by the tissue turbidity and affected by its absorption and scattering characteristics. This study investigated the effect of using an optical clearing agent (OCA) on tissue to improve the therapeutic effect of 1064 nm wavelength laser light by reducing the heat generated on the skin surface and increasing the penetration depth. Materials and Methods A diode laser (λ = 1064 nm) was applied to a porcine specimen with and without OCA to investigate the penetration depth of the laser light and temperature distribution. A numerical simulation using the finite element method was performed to investigate the temperature distribution of the specimen compared to ex-vivo experiments using a thermocouple and double-integrating sphere to measure the temperature profile and optical properties of the tissue, respectively. Results Simulation results showed a decrease in tissue surface temperature with increased penetration depth when the OCA was applied. Furthermore, both absorption and scattering coefficients decreased with the application of OCA. In ex-vivo experiments, temperatures decreased for the tissue surface and the fat layer with the OCA, but not for the muscle layer. Conclusion The use of an OCA may be helpful for reducing surface heat generation and enhance the light penetration depth in various near-infrared laser treatments.

Analysis of Surface Profile using Gap Sensor (Gap 센서를 이용한 가공물의 표면특성 분석)

  • 송무건;유송민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.304-308
    • /
    • 2000
  • Surface roughness measurement system with capacitance type gap sensor. Tentative result from the calibration measurement showed the potential applicability of the sensor to the processed specimen. In order to test the sensitivity of the measurement system, several parameters including valley depth, width of the specimen have been changed. Effect of the charge area between sensor and specimen surface has been also analyzed.

  • PDF