• Title/Summary/Keyword: specific surface area

Search Result 1,580, Processing Time 0.035 seconds

Synthesis of Hydroxyapatite Using a Cationic Surfactant (양이온성 계면활성제를 이용한 수산화인회석 합성)

  • Lee, Keunyoung;Kwon, Ki-Young
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.639-642
    • /
    • 2019
  • Hydroxyapatite (HAP) containing hexadecyltrimethylammonium chloride (CTAC) as a cationic surfactant was prepared by a precipitation method. X-ray diffraction (XRD), transmission electron microscopy (TEM) and micropore physisorption analyzer were used for characterizing the crystal phase, morphology and specific surface area of HAP and CTAC-HAP. After thermal treatment, the specific surface area of both pure HAP and CTAC-HAP were reduced. The sharp rod morphology of CTAC-HAP was changed into a round shape with a smaller aspect ratio after the heat treatment. The morphological change by thermal treatment was also observed in pure HAP. Therefore, the morphological change and decrease of the specific surface area suggested that pores from the removal of CTAC during thermal treatment were not retained.

The Change of Adsorption Characteristics for VOCs by HNO3 Activation of Adsorbent Prepared from MSWI Fly Ash (질산을 이용한 Fly Ash 흡착제의 표면 활성화에 따른 VOCs 흡착 특성의 변화)

  • Shim Choon-Hee;Lee Woo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.4
    • /
    • pp.471-478
    • /
    • 2005
  • The objective of this research is to improve adsorption efficiency of adsorbent made from MSWI (Municipal Solid Waste Incinerator) ny ash by $HNO_3$ activation. The acidity and the basicity were determined by Boehm's method and the surface structure was studied by BET method with N2 adsorption. The adsorption properties were investigated with benzene and MEK (Methylethylketone). $HNO_3$ activation can modify the surface property of an adsorbent such as specific surface area, pore volume, and functional group. According to the results, the specific surface area of the adsorbent was increased from $309.2m^2/g\;to\;553.2 m^2/g$ by activation. Also oxygen-containing functional groups were formed on it.

The study of electrode for energy storaging at supercapacitor system using nano carbon fiber material (나노 탄소재료를 이용한 에너지 저장형 슈퍼커패시터용 전극 제조)

  • Hwang, Sung-Ik;Choi, Won-Kyung;Momma, Toshiyukl;Osaka, Tetsuya;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.683-686
    • /
    • 2004
  • In recent years, the supercapacitor and hybrid capacitor have related with substitutional energy source focused of many scientists because of their usage in power sources for electric vehicles, computers and other electric devices. The storage energy of electrical charge is based on electrostatic interactions in the electric double layer at the electrode/electrolyte interface, resulting in high rate capability and long cycle performance compared with batteries based on Faradaic electrode reactions. So we have been considered to carbon nanofibers as the ideal material for supercapacitors due to their high utilization of specific surface area, good conductivity, chemical stability and other advantages. In this work, we aimed to find out that the capacitance have increased because of electrochemical capacitance to provide by carbon nanofibers. Also carbon nanofibers based on chemical method and water treatment have been resulted larger capacitances and also exhibit better electrochemical behaviors about 15% than before of nontreated state. And also optical observations with treated and nontrteated carbon nanofibers discussed by the TEM, SEM, EDX, BET works and specific surface area analyzer. Their results also focused on the surface area of electrode and electrical capacitance was also improved by the effect of surface treatments.

  • PDF

New High-Yield Method for the Production of Activated Carbon Via Hydrothermal Carbonization (HTC) Processing of Carbohydrates

  • Sharma, Sanjeev;Chun, Sang-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.387-393
    • /
    • 2019
  • Activated carbons (ACs) are considered important electrode materials for supercapacitors because their large specific surface areas lead to high charging capacities. In the conventional synthesis of ACs, a substantial amount of carbon is lost during carbonization of a precursor. The development of a method to synthesize ACs in high yield would lower their manufacturing cost. Here, we demonstrate the synthesis of high-specific-surface-area NaOH-AC from carbon prepared via a hydrothermal carbonization (HTC) route, with a higher yield than that achieved through conventional pyrolysis carbonization. The amorphous carbon was derived from HTC of sugar and subsequently activated at 800℃ with various NaOH etchant/C ratios under a N2 atmosphere. The AC prepared at 4:1 NaOH/C exhibited the highest surface area (as high as 2,918 ㎡ g-1) and the highest specific capacitance (157 F g-1 in 1 M aqueous Na2SO4 electrolyte solution) among the NaOH-AC samples prepared in this work. On the basis of their high specific capacitance, the NaOH-ACs prepared from HTC sugar are suitable for use as electrode materials for supercapacitors.

Preparation of Activated Carbon from Waste Citrus Peels by ZnCl2 (ZnCl2를 이용하여 폐감귤박으로부터 활성탄 제조)

  • Kang, Kyung-Ho;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1091-1098
    • /
    • 2007
  • Activated carbon was prepared from waste citrus peels by chemical activation with $ZnCl_2$. The optimal condition of carbonization was at $300^{\circ}C$ for 1.5 hr. Activation experiments with carbonized samples prepared at optimal carboniztion condition were carried out under various conditions such as activation temperature of 400 to $900^{\circ}C$, activation time of 0.5 to 2.0 hr, and $ZnCl_2$ ratio of 100 to 300%. In order to investigate the physical properties of the activated carbons prepared, iodine adsorptivities and specific surface areas were measured and their morphologies were observed from scanning electron microscopy. As $ZnCl_2$ ratio increased, activation yield decreased, while iodine adsorptivity and specific surface area increased. The optimal condition of activation was at 300% $ZnCl_2$ ratio and $300^{\circ}C$ for 1.5 hr, and then iodine adsorptivity and specific surface area was measured as about 862 mg/g and $756m^2/g$, respectively. SEM photography showed that the surface morphology was changed and many active pore were produced by chemical activation.

A Study on a Fixed Bed Biofilm Process Using Porous Glass Media (다공성(多孔性) 유리메디아를 이용한 고정상(固定床) 생물막법(生物膜法)에 관한 연구(硏究))

  • Yoon, Tae Il;Kim, Jae Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.112-120
    • /
    • 1996
  • In this study, the porous glass media was utilized as biomass carrier, and the optimum characteristics of this new media in fixed bed biofilm process were investigated. The characteristics of media considered here are a void volume fraction, a specific surface area, and surface characteristics of media. The effect of surface roughness and material could be clearly demonstrated by the fact that the porous glass media showed a good potential for biofilm development. This might results from the fact that biofilm is initially formed in the surface cavities of the media is protect from the shear effect. Therefore, the microcolonies are not readily detached by the fluid shear. In the steady state, biofilm formation along the packing bed depth was different from media to media. The specific area was also an important factor for the attachment of microorganism on the media surface. The specific area was also an important factor for the attachment of microorganism on the media surface. In the case of porous glass media, about $100m^2/m^3$ was enough to obtain a good organic removal efficiency The organic removal efficiency could be improved by increasing the void volume fraction in the reactor, at least 80% was required to obtain a high removal efficiency and prevent clogging. From the analysis of kinetics study, the yield coefficient, Y, was 0.42 mgMLSS/mgSBOD, endogenous respiration coefficient, ke, was $0.12day^{-1}$ and substrate removel coefficient of Mckinney. km, was $16.8hr^{-1}$ for the porous glass media G-2

  • PDF

Selective Removal of Cr (VI) and Cr (III) in Aqueous Solution by Surface Modified Activated Carbon

  • Lee, Jeong-Min;Kim, Min-Il;Lee, Young-Seak
    • Carbon letters
    • /
    • v.9 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • The adsorption and reduction of Cr (VI) to Cr (III) by surface modified activated carbon (AC) in an aqueous solution was studied. The effects of surface modifications on the properties of the carbons were investigated by the analysis of specific surface area, carbon surface pH, acid/base surface values and functional groups. In order to understand the Cr(VI) adsorption and reduction ratio from Cr(VI) to Cr(III), the Cr adsorption capacity of AC was also measured and discussed by using inductively coupled plasma and UV spectrophotometer. The modifications bring about substantial variation in the chemical properties whereas the physical properties such as specific surface area, pore volume and pore size distribution nearly were not changed. Total Cr adsorption efficiency of as-received activated carbon (R-AC) and nitric acid treated activated carbon (N1-AC and N2-AC) were recorded on 98.2, 99.7 and 100%. Cr(III) reduction efficiency of R-AC increased largely from 0.4% to 28.3% compared to N1-AC and N2-AC.

The Effect of Initial pH and Dose of $TiO_2$ on Chloroform Removal in Photocatalytic Process using Compound Parabolic Concentrator Reactor System (CPCs를 이용한 $TiO_2$ 광촉매반응공정에서 초기 pH와 촉매농도가 클로로포름 분해에 미치는 영향)

  • Cho, Sang-Hyun;Cui, Mingcan;Nam, Sang-Geon;Jung, Hee-Suk;Khim, Jee-Hyeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1147-1153
    • /
    • 2010
  • To evaluate the solar photocatalytic degradation efficiency of chloroform in a real solar-light driven compound parabolic concentrators (CPCs) system, $TiO_2$ was irradiated with a metalhalide lamp (1000 W), which has a similar wavelength to sunlight. The results were applied to a pilot scale reactor system by converting the data to a standardized illumination time. In addition, the effects of initial pH and the $TiO_2$ dose on the photocatalytic degradation of chloroform were investigated. The results were compared with the specific surface area (S.S.A) and particle size of $TiO_2$, which changed according to the pH, to determine the relationship between the S.S.A, particle size and the photocatalytic degradation of chloroform. The experiment was carried out at pH 4~7 using 0.1, 0.2, 0.4 g/L of $TiO_2$. The particle size and specific surface area of $TiO_2$ were measured. There was no significant difference between the variables. However, pH affects the particle size distribution and specific surface area of $TiO_2$. Inaddition, the activation of a photocatalyst did not show a linear relationship with the specific surface area of $TiO_2$ in the photocatalytic degradation of chloroform.

Properties of Alumina Powder Prepared by Precipitation Method(II) : Properties of Alumina Powder on Heat-Treatment (침전법으로 제조한 Alumina 분말의 특성(II) : 열처리에 따른 Alumina 분말의 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.193-200
    • /
    • 1988
  • The starting materials were aluminum hydroxide prepared by precipitation method at the conditions of pH values; 7, 9, 10 and 11. The properties of alumina powder on heat-treatment were studied. After dehydrating structural water from amorphous aluminum hydroxide, the first formed phase was amorphous alumina and its specific surface are was decreased. The specific surface area was increased by dehydration of structural water from aluminum hydroxides except amorphous aluminum hydroxide. The specific surface area was increased with increase of the ratio of A1OOH to $A1(OH)_3$ in the region of transition aluminas. The rate of transition from aluminum hydroxide to alpha alumina occurred in the order of 7, 10, 9 and 11 of pH values. The morphology of alpha alumina powders was skeleton particles remaining outer shape of aluminum hydroxide. Both the elevation of heat-treatment temperature and the transition toalpha alumina decreased specific surface area and brought about the growth of particles.

  • PDF

Introduction to Qunatification of Damage Parameters for Concrete Using X-ray Computed Tomography (X-ray Computed Tomography를 이용한 콘크리트의 손상파라미터 정량화)

  • 박대효;박재민;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.501-504
    • /
    • 2003
  • The purpose of this work is to introduce some fundamental stereological concepts to quantify damage parameters using X-ray CT(Computed Tomography) in the scope of CDM(Continuum Damage Mechanics). X-ray CT is a completely nondestructive technique for visualizing features in the interior of opaque solid objects, and for obtaining digital information on their 3D geometries and properties. Many researchers have introduced lots of damage parameters to model the mechanical behavior of deteriorated materials. Those damage parameters can be represented in many forms such as specific void or crack surfaces, the spacing between cracks, the specific damaged surface area, the specific damaged surface area tensor, the mean solid path among the damaged surfaces and the mean solid path tensor. Despite of many accomplishments in CDM since there is no the systematic experiment, it have limitations in application. In this situation, X-ray computed tomography is highlited by many researchers and applied in a wide range of materials including rock, bone, ceramic, metal, soft tissue and concrete.

  • PDF