• Title/Summary/Keyword: specific surface area

Search Result 1,580, Processing Time 0.032 seconds

Synthesis of the BaTiO$_3$ Powders by the Glyscine-Nitrate Process and Its Properties (Part I) (Glycine-Nitrate 법에 의한 BaTiO$_3$ 분말의 합성 및 그 특성(Part I))

  • 박지애;김구대;이홍림;이동아
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.857-863
    • /
    • 1998
  • The BaTiO3 powders extensively used as MLCC (Multilayer ceramic capacitor) in electronic ceramic in-dustry were synthesized by GNP (Glycine-Nitrate process) The powders were prepared using carbonate and alkoxide as starting materials and nitric acid was used as a solvent for starting materials as well as an oxidant for combustion. The BaTiO3 powders were synthesized using different amounts of glycine as a fuel for combustion. The characteristics of synthesized powders were examined with helium pycnometer X-ray diffraction(XRD) Brunauer-Emmett-Teller with N2 adsorption and scanning electron microscopy(SEM). It was found that single phase BaTiO3 could be formed when the as-synthesized powders were heat-treated at 100$0^{\circ}C$ When the glycine/cation molar ratio was 1,2 specific surface area was 24m2/g

  • PDF

Fluidity of Cement Paste with Air-Cooled Blast Furnace Slag (고로 서냉슬래그 혼합 시멘트 페이스트의 유동성)

  • Lee, Seung-Heun;Park, Seol-Woo;Yoo, Dong-Woo;Kim, Dong-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.584-590
    • /
    • 2014
  • Air-cooled slag showed grindability approximately twice as good as that of water-cooled slag. While the studied water-cooled slag was composed of glass as constituent mineral, the air-cooled slag was mainly composed of melilite. It is assumed that the sulfur in air-cooled slag is mainly in the form of CaS, which is oxidized into $CaS_2O_3$ when in contact with air. $CaS_2O_3$, then, is released mainly as $S_2O{_3}^{2-}$ion when in contact with water. However, the sulfur in water-cooled slag functioned as a constituent of the glass structure, so the$S_2O{_3}^{2-}$ ion was not released even when in contact with water. When no chemical admixture was added, the blended cement of air-cooled slag showed higher fluidity and retention effect than those of the blended cement of the water-cooled slag. It seems that these discrepancies are caused by the initial hydration inhibition effect of cement by the $S_2O{_3}^{2-}$ ion of air-cooled slag. When a superplasticizer is added, the air-cooled slag used more superplasticizer than did the blast furnace slag for the same flow because the air-cooled slag had higher specific surface area due to the presence of micro-pores. Meanwhile, the blended cement of the air-cooled slag showed a greater fluidity retention effect than that of the blended cement of the water-cooled slag. This may be a combined effect of the increased use of superplasticizer and the presence of released $S_2O{_3}^{2-}$ ion; however, further, more detailed studies will need to be conducted.

Control of Microstructure on TiO2 Nanofibers for Photocatalytic Application (광촉매 응용을 위한 TiO2 나노 섬유의 미세구조 제어)

  • Lee, Chang-Gyu;Kim, Wan-Tae;Na, Kyeong-Han;Park, Dong-Cheol;Yang, Wan-Hee;Choi, Won-Youl
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.417-421
    • /
    • 2018
  • $TiO_2$ has excellent photocatalytic properties and several studies have reported the increase in its specific surface area. The structure of $TiO_2$ nanofibers indicates promising improved photocatalytic properties and these nanofibers can thus potentially be applied in air pollution sensors and pollutant removal filters. In this study, a $TiO_2$ nanofiber was fabricated by the electrospinning method. The fabrication processing factors such as the applied voltage, the distance between nozzle and collector, and the inflow rate of solution were controlled. The precursor was titanium (IV) isopropoxide and as-spun $TiO_2$ nanofibers were heated at $450^{\circ}C$ for 2 h to obtain an anatase crystalline structure. The microstructure was analyzed using field emission scanning electron microscope (FE-SEM) and X-ray diffraction analysis (XRD). The anatase phase was observed in the $TiO_2$ nanofibers after heat treatment. The diameter of $TiO_2$ nanofibers increased with the flow rate, but decreased with decreasing applied voltage and nozzle to collector distance. The diameter of $TiO_2$ nanofibers was controlled in the range of 364 nm to 660 nm. These nanofibers are expected to be very useful in photocatalytic applications.

Densification and Microstructure of Ultrafine-sized AlN Powder Prepared by a High Energy Ball Milling Process (고에너지 볼밀링 방법에 의해 얻어진 초미립 AlN 분말의 치밀화 및 미세구조)

  • Park, Hae-Ryong;Kim, Young-Do;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2012
  • In this study, a high energy ball milling process was employed in order to improve the densification of direct nitrided AlN powder. The densification behavior and the sintered microstructure of the milled AlN powder were investigated. Mixture of AlN powder doped with 5 wt.% $Y_2O_3$ as a sintering additive was pulverized and dispersed up to 50 min in a bead mill with very small $ZrO_2$ beads. Ultrafine AlN powder with a particle size of 600 nm and a specific surface area of 9.54 $m^2/g$ was prepared after milling for 50 min. The milled powders were pressureless-sintered at $1700^{\circ}C-1800^{\circ}C$ for 4 h under $N_2$ atmosphere. This powder showed excellent sinterability leading to full densification after sintering at $1700^{\circ}C$ for 4 h. However, the sintered microstructure revealed that the fraction of yitttium aluminate increased with milling time and sintering temperature and the newly-secondary phase of ZrN was observed due to the reaction of AlN with the $ZrO_2$ impurity.

Preparation of Adsorbent from Sewage Sludge by Steam Activation and Adsorption Characteristic (하수슬러지의 수증기 활성화법을 이용한 흡착제 제조와 흡착특성)

  • Jung, Dong-Hyun;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.515-520
    • /
    • 2007
  • Recently, the treat of sludge is usually progressed by ocean disposal. But it will be totally banned by content of its heavy metal according to London Dumping Convention, gradually. The stable way of treat of sewage sludge should be examined urgently. To solve the problem, recently, there are efficient and environment-oriented method. One of them is to produce absorbent through the activation. This study produces absorbent through steam activation. As basic experiment, optimum activation condition for preparation of good absorbent is researched through study of the fellowing variables : steam flow rate, activated temperature, activation time. As the result of this with standard on iodine adsorptivity, it is chosen, that steam flow rate "30 mL/hr", activation temperature $"500^{\circ}C"$, activation time "60 minutes". At the time, iodine adsorptivity and yield shown that 228.4 mg/g, 77.23%. And also, by using nitrogen adsorption, SEM and EDS are confirmed that pore development, specific surface area, mean pore size, chemical component and content. Pore developed by steam activation is also confirmed that it is micropore.

Characteristics of Soil Nutrients by the Application of Rice Straw Ash (볏짚 회분의 토양적용에 따른 양분 특성 변화)

  • Kang, Ku;Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.105-113
    • /
    • 2018
  • In this study physical and chemical characteristics of rice straw ash (RSA) were analyzed in agricultural by-products such as the characteristics of soil pH, electric conductivity (EC), total phosphorus (T-P), available phosphate (Avail-P), and cation exchange capacity (CEC). The results showed that RSA is of mainly C in 95.74% and followed by Si > Al > P > Mg > K > Ca. The pH of RSA was high near 11 and the T-P concentration was $2,322.38{\pm}10.35mg/kg$. The specific surface area of RSA was $123.50m^2/g$, which was much lower than that of biochar. The X-ray diffraction (XRD) analysis indicated that RSA were C and Si based crystalline. TCLP and KSLT test results implied that the heavy metal concentrations were below the environmental standards and would not impose the risks. T-P concentration increased from $225.59{\pm}12.69mg/kg$ to $593.39{\pm}17.36mg/kg$ along with RSA mixing ratio to soil from 0% to 15%. Both pH and EC values were increased with the increase of RSA ratio. The changes in Avail-P and CEC were not when RSA mixing ratio was 1%. whereas the Avail-P concentration was slightly increase when the mixing ratio was more than 5%. Additional investigation considering receiving soil characteristics based on the results of this study would help effective application of RSA to soil.

Dispersibility and Flexural Toughness Evaluation of Fiber Reinforcement Cellular Sprayed Concrete by added Foam (기포를 혼입한 섬유보강 셀룰러 스프레이 콘크리트 공법의 분산성 및 휨인성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Nam-Gung, Kyeong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4192-4200
    • /
    • 2015
  • In this paper, dispersibility of steel fiber is improved mixing with form for material development of protection and blast resistant structure sprayed concrete. And it is developed a high toughness cellular sprayed concrete material using steel fiber. Oversupply form for dispersibility improvement of steel fiber is mostly fade away through sprayed, finally it is satisfied with the proper mixing ratio under 3 % ~ 6 %. This is considered for compressive strength and flexural toughness. Test results of compressive strength showed superior strength capability in 28, 56 days, also flexural strength and flexural toughness is great. Then oversupply form is enhanced for dispersibility of steel fiber and I think that it did not cause decreasing of strength. But analysis results of pore structure through image analysis failed for a great spacing factor and specific surface area. This is largely measured in spacing factor because air content have a grate evaporation effect for sprayed.

Tailoring of the Chemical Resistance of Chrome Yellow Particles by Silica Coating (안료의 내약품성 향상을 위한 황연입자의 실리카 피복에 관한 연구)

  • Lee, Seewoo;Kim, Seongsoo;Kim, Dong-Uk;Wang, Lin;Choi, Heekyu
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.310-315
    • /
    • 2008
  • Herein, we synthesized silica-coated chrome yellow particles having improved chemical resistance. The intermediate with a good dispersion stability was prepared and the chemical resistance of the final product was investigated. The effects of pH and temperature, as the main parameters influencing the formation of particles, the reduced particle size by homogenizer on the silica coating were investigated. The change in the particle morphology by temperature and pH was also studied. As the results, small and monodisperse particles were achieved at low pH and high temperature. Good silica coating was obtained when used reduced size of the particles by homogenizer. Furthermore, the sufficient silica coating by microencapsulation was obtained at 9~10 pH and the temperature above $90^{\circ}C$.

Transesterification of Soybean Oil Using KOH/KL Zeolite and Ca/Undaria pinnatifida Char (KOH/KL제올라이트 및 Ca/미역촤를 이용한 대두유의 전이에스테르화 반응)

  • Jo, Yong Beom;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.604-607
    • /
    • 2012
  • Solid base catalysts for biodiesel production were synthesized by impregnating basic metal species on two support materials with large specific surface area : zeolite and pyrolysis char. KL zeolite and Undaria pinnatifida char were impregnated with KOH aqueous solution and calcium nitrate solution, respectively, to enhance the basic strength. The catalysts synthesized were characterized using Hammett indicators and $CO_2$-TPD analysis. Biodiesel was produced using soybean oil and methanol over the catalysts synthesized. The content of fatty acid methyl esters was measured to evaluate the catalytic activity. Generally, the catalytic activity increased with increasing quantity of basic metal impregnated but impregnation of excessive amount of metal could cause reduction in the activity.

Preparation Nanosized TPA-Silicalite-1 with Different Silica Sources and Promoters (다양한 실리카 원과 결정화 촉진제를 이용한 나노크기의 TPA-Silicalite-1 제조)

  • Jung, Sang-Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.286-291
    • /
    • 2014
  • In this study, nanosized TPA-silicalite-1 was synthesized with a suitable molar composition of TPAOH: $SiO_2$: $H_2O$ for the development of zeolite ceramic membranes to utilize as gas separation. As silica sources, TEOS, LUDOX AS-40 and CAB-O-SIL were used with the starting material of TPAOH. $NaH_2PO_4$, and a variety of acids and bases were used as promoters after TPAOH, $SiO_2$, $H_2O$ gel synthesis. To decrease synthesis time, a two step temperature change method was applied to the synthesis of TPA-silicalite-1 at a low temperature. TPA-silicalite-1 synthesized was analyzed with XRD, SEM, BET and TGA. As a result, TPA-silicalite-1 powders with a particle size of 100 nm and a specific surface area of $416m^2/g$ were obtained as optimum synthesis conditions when the two stage temperature change method was used with $NaH_2PO_4$ as promoter.