• Title/Summary/Keyword: specific productivity

Search Result 631, Processing Time 0.024 seconds

An effective automated ontology construction based on the agriculture domain

  • Deepa, Rajendran;Vigneshwari, Srinivasan
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.573-587
    • /
    • 2022
  • The agricultural sector is completely different from other sectors since it completely relies on various natural and climatic factors. Climate changes have many effects, including lack of annual rainfall and pests, heat waves, changes in sea level, and global ozone/atmospheric CO2 fluctuation, on land and agriculture in similar ways. Climate change also affects the environment. Based on these factors, farmers chose their crops to increase productivity in their fields. Many existing agricultural ontologies are either domain-specific or have been created with minimal vocabulary and no proper evaluation framework has been implemented. A new agricultural ontology focused on subdomains is designed to assist farmers using Jaccard relative extractor (JRE) and Naïve Bayes algorithm. The JRE is used to find the similarity between two sentences and words in the agricultural documents and the relationship between two terms is identified via the Naïve Bayes algorithm. In the proposed method, the preprocessing of data is carried out through natural language processing techniques and the tags whose dimensions are reduced are subjected to rule-based formal concept analysis and mapping. The subdomain ontologies of weather, pest, and soil are built separately, and the overall agricultural ontology are built around them. The gold standard for the lexical layer is used to evaluate the proposed technique, and its performance is analyzed by comparing it with different state-of-the-art systems. Precision, recall, F-measure, Matthews correlation coefficient, receiver operating characteristic curve area, and precision-recall curve area are the performance metrics used to analyze the performance. The proposed methodology gives a precision score of 94.40% when compared with the decision tree(83.94%) and K-nearest neighbor algorithm(86.89%) for agricultural ontology construction.

Innovative Approaches to Training Specialists in Higher Education Institutions in the Conditions of Distance Learning

  • Oksana, Vytrykhovska;Alina, Dmytrenko;Olena, Terenko;Iryna, Zabiiaka;Mykhailo, Stepanov;Tetyana, Koycheva;Oleksandr, Priadko
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.116-124
    • /
    • 2022
  • Information and communication technologies used in the social sphere are born due to the development of computer technologies. The main task of the distance learning process in higher education institutions is not to provide information, but to teach how to obtain and use it. The purpose of the article: to identify innovative approaches in the training of specialists in higher education institutions in the context of distance learning. Various innovative approaches to organizing the work of students of higher educational institutions in the context of distance learning are considered. Based on the conducted research, it is concluded that each of the approaches described by us outlines the study of the phenomenon of professional training of a specialist in the condition of distance learning. All the described approaches significantly contribute to the improvement of professional training of specialists, encourage students to self-improvement, professional development and enrich their professional competence in modern conditions. The emergence and spread of innovative technologies means not only a change in the activity itself and its inherent means and mechanisms of its implementation, but also a significant restructuring of goals, value orientations, specific knowledge, skills and abilities. Therefore, the current stage of the development of civilization, scientific and technological progress requires the emergence of such specialists who would have broad humanitarian thinking, would have good psychological training, would be able to build professional activities according to laws that take into account the relationship between economic productivity and creativity, as well as the desire of the individual for constant renewal, self-realization. Only such qualities will help you master the specifics of innovative technologies well. We see the prospects in the study of innovative approaches to training specialists in higher education institutions in the condition of distance learning in foreign countries.

VSimulators: A New UK-based Immersive Experimental Facility for Studying Occupant Response to Wind-induced Motion of Tall Buildings

  • Antony Darby;James Brownjohn;Erfan Shahabpoor;Kaveh Heshmati
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.347-362
    • /
    • 2022
  • Current vibration serviceability assessment criteria for wind-induced vibrations in tall buildings are based largely on human 'perception' thresholds which are shown not to be directly translatable to human 'acceptability' of vibrations. There is also a considerable debate about both the metrics and criteria for vibration acceptability, such as frequency of occurrence or peak vs mean vibration, and how these might vary with the nature of the vibration. Furthermore, the design criteria are necessarily simplified for ease of application so cannot account for a range of environmental, situational and human factors that may enhance or diminish the impact of vibrations on serviceability. The dual-site VSimulators facility was created specifically to provide an experimental platform to address gaps in understanding of human response to building vibration. This paper considers how VSimulators can be used to inform general design guidance and support design of specific buildings for habitability, in terms of vibration, which allow engineers and clients to make informed decisions with regard to sustainable design, in terms of energy and financial cost. This paper first provides a brief overview of current vibration serviceability assessment guidelines, and the current understanding and limitations of occupants' acceptability of wind-induced motion in tall buildings. It then describes how the dual-site VSimulators facility at the Universities of Bath and Exeter can be used to assess the effects of motion and environment on human comfort, wellbeing and productivity with examples of how the facility capabilities have been used to provide new, human experience based experimental research approaches.

Physiology and Gene Expression Analysis of Tomato (Solanum lycopersicum L.) Exposed to Combined-Virus and Drought Stresses

  • Samra Mirzayeva;Irada Huseynova;Canan Yuksel Ozmen;Ali Ergul
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.466-485
    • /
    • 2023
  • Crop productivity can be obstructed by various biotic and abiotic stresses and thus these stresses are a threat to universal food security. The information on the use of viruses providing efficacy to plants facing growth challenges owing to stress is lacking. The role of induction of pathogen-related genes by microbes is also colossal in drought-endurance acquisition. Studies put forward the importance of viruses as sustainable means for defending plants against dual stress. A fundamental part of research focuses on a positive interplay between viruses and plants. Notably, the tomato yellow leaf curl virus (TYLCV) and tomato chlorosis virus (ToCV) possess the capacity to safeguard tomato host plants against severe drought conditions. This study aims to explore the combined effects of TYLCV, ToCV, and drought stress on two tomato cultivars, Money Maker (MK, UK) and Shalala (SH, Azerbaijan). The expression of pathogen-related four cellulose synthase gene families (CesA/Csl) which have been implicated in drought and virus resistance based on gene expression analysis, was assessed using the quantitative real-time polymerase chain reaction method. The molecular tests revealed significant upregulation of Ces-A2, Csl-D3,2, and Csl-D3,1 genes in TYLCV and ToCV-infected tomato plants. CesA/Csl genes, responsible for biosynthesis within the MK and SH tomato cultivars, play a role in defending against TYLCV and ToCV. Additionally, physiological parameters such as "relative water content," "specific leaf weight," "leaf area," and "dry biomass" were measured in dual-stressed tomatoes. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.

CONSTRUCTION MANAGEMENT OF TUNNELLING IN SEVERE GROUNDWATER CONDITION

  • Young Nam Lee;Dae Young Kim
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.655-661
    • /
    • 2005
  • For a hydro power plant project, the headrace tunnel having a finished diameter of 3.3m was constructed in volcanic rocks with well-developed vertical joint and high groundwater table. The intake facility was located 20.3 km upstream of the powerhouse and headrace tunnel of 20 km in length and penstock of 440 m in height connected the intake and the powerhouse. The typical caldera lake, Lake Toba set the geology at the site; the caving of the ground caused tension cracks in the vertical direction to be developed and initial stresses at the ground to be released. High groundwater table(the maximum head of 20 bar) in the area of well-connected vertical joints delayed the progress of tunnel excavation severely due to the excessive inflow of groundwater. The excavation of tunnel was made using open-shield type TBM and mucking cars on the rail. High volume of water inflow raised the water level inside tunnel to 70 cm, 17% of tunnel diameter (3.9 m) and hindered the mucking of spoil under water. To improve the productivity, several adjustments such as modification of TBM and mucking cars and increase in the number of submersible pumps were made for the excavation of severe water inflow zone. Since the ground condition encountered during excavation turned out to be much worse, it was decided to adopt PC segment lining instead of RC lining. Besides, depending on the conditions of the water inflow, rock mass condition and internal water pressure, one of the invert PC segment lining with in-situ RC lining, RC lining and steel lining was applied to meet the site specific condition. With the adoption of PC segment lining, modification of TBM and other improvement, the excavation of the tunnel under severe groundwater condition was successfully completed.

  • PDF

Changes in Spatial Distribution of Core Manufacturing and Service Industries of the Fourth Industrial Revolution (4차 산업혁명 관련 공통 세부업종 제조업 및 서비스업의 수도권 내 공간적 분포 변화)

  • Jaewon Kim;Soonbeom Ahn;Up Lim
    • Journal of Information Technology Services
    • /
    • v.22 no.2
    • /
    • pp.1-21
    • /
    • 2023
  • Due to the convergence and complexity of the 4th Industrial Revolution, the boundaries between industries have become unclear and ambiguous. Consequently, there is a lack of research on how firms engaged in this industry are changing their location behavior. Recently, some attempts to classify the industrial groups of the 4th Industrial Revolution and their detail occupations have been made, and this study adopts the classification of Lee and Jung (2020) of the Korea Institute for Industrial Economics & Trade. In this study, the 18 detailed industries commonly included in multiple industrial groups are defined as 'core industries' and are classified into manufacturing and service industries to explore the spatial patterns of firms' location. Specifically, this study aims to examine how the location behavior of firms in core industries of the 4th Industrial Revolution has changed from 2010 to 2019 in the Seoul metropolitan area, using the 「National Business Survey」 data. We employed two methods based on spatial auto-correlation: (i) spatial kernel density estimation analysis and (ii) local Moran's Ii analysis. The results indicate that the core industry firms form more distinct and larger clusters in 2019 based on the clusters formed in 2010. Specifically, manufacturing industry firms tended to concentrate in the southern region of Gyeonggi and parts of Seoul, while serivce industry firms were more concentrated in Seoul. These core industries play a critical role in industries and are closely related to the ICT industries, which generate high-added value and increase productivity in the front and rear industries. This study reveals that the agglomeration of these industries in specific regions is intensifying and may exacerbate regional inequality.

Enhancing Construction Productivity and Quality Through Waterproofing Equipment Technologies (생산성 및 품질향상을 위한 방수공사의 장비 활용 시공기술)

  • Kim, Han-Sic;Ha, Jung-Soo;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.429-440
    • /
    • 2023
  • This research investigates the deployment of waterproofing technologies in construction, with a specific focus on augmenting worker safety, work environment, and solve the difficulty of securing skilled workers. Implementing liquid waterproofing cement equipment resulted in a remarkable increase in adhesion performance by around 20%, coupled with a twofold acceleration in operational speed. The application of primer spraying apparatus led to a two-fold improvement in both penetration and adhesion performance, concurrently boosting the work speed by approximately the same factor. With urethane spraying equipment, the workload could be reduced to a third for the same layer thickness, adhesion performance enhanced by approximately 1.4 times, and workability improved by about 1.4 to 1.5 times. These findings suggest that such technological interventions can potentially enhance work efficiency, improve the quality of output, and mitigate safety accidents that are commonplace in manual operations. Furthermore, these advancements present promising solutions to the ongoing challenges of sourcing highly-competent workers in the industry.

A Path Generation Method Considering the Work Behavior of Operators for an Intelligent Excavator (운전자의 작업행태를 고려한 지능형 굴삭기의 이동경로 생성 방법)

  • Kim, Sung-Keun;Koo, Bonsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.433-442
    • /
    • 2010
  • Recent decrease in the availability of experienced skilled labor and a corresponding lack of new entrants has required the need for automating many of the construction equipment used in the construction industry. In particular, excavators are widely used throughout earthwork operations and automating its tasks enables work to be performed with higher productivity and safety. This paper introduces an optimal path generation method which is one of the core technologies required to make "Intelligent" excavators a reality. The method divides a given earthwork area into unit cells, identifies networks created by linking these cells, and identifies the optimal path an excavator should follow to minimize its total transportation costs. In addition, the method also accounts for drainage direction and path continuity to ensure that the generated path considers site specific conditions.

Vision-Based Activity Recognition Monitoring Based on Human-Object Interaction at Construction Sites

  • Chae, Yeon;Lee, Hoonyong;Ahn, Changbum R.;Jung, Minhyuk;Park, Moonseo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.877-885
    • /
    • 2022
  • Vision-based activity recognition has been widely attempted at construction sites to estimate productivity and enhance workers' health and safety. Previous studies have focused on extracting an individual worker's postural information from sequential image frames for activity recognition. However, various trades of workers perform different tasks with similar postural patterns, which degrades the performance of activity recognition based on postural information. To this end, this research exploited a concept of human-object interaction, the interaction between a worker and their surrounding objects, considering the fact that trade workers interact with a specific object (e.g., working tools or construction materials) relevant to their trades. This research developed an approach to understand the context from sequential image frames based on four features: posture, object, spatial features, and temporal feature. Both posture and object features were used to analyze the interaction between the worker and the target object, and the other two features were used to detect movements from the entire region of image frames in both temporal and spatial domains. The developed approach used convolutional neural networks (CNN) for feature extractors and activity classifiers and long short-term memory (LSTM) was also used as an activity classifier. The developed approach provided an average accuracy of 85.96% for classifying 12 target construction tasks performed by two trades of workers, which was higher than two benchmark models. This experimental result indicated that integrating a concept of the human-object interaction offers great benefits in activity recognition when various trade workers coexist in a scene.

  • PDF

Multi-environment Trial Analysis for Yield-related Traits of Early Maturing Korean Rice Cultivars

  • Seung Young Lee;Hyun-Sook Lee;Chang-Min Lee;Su-Kyung Ha;Youngjun Mo;Ji-Ung Jeung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.252-252
    • /
    • 2022
  • Genotype-by-environment interaction (GEI) refers to the comparative response of genotypes to different environments conditions. Thus, understanding GEI is a fundamental component for selecting superior genotypes for breeding programs. The significance of utilizing early maturing cultivars not only provides flexibility in planting dates, but also serves as an effective strategy to reduce methane emission from the paddy fields. In this study, we conducted multi-environment trials (METs) to evaluate yield-related traits such as culm length, panicle length, panicle number, spikelet per plant, and thousand grain weight. A total of eighty-one Korean commercial rice cultivars categorized as early maturing cultivars, were cultivated in three regions, two planting seasons for two years. The genotype main effect plus genotype-by-environment interaction (GGE) biplot analysis of yield-related traits and grain yield explained 70.02-91.24% of genotype plus GEI variation, and exhibited various patterns of mega-environment delineation, discriminating ability, representativeness, and genotype rankings across the planting seasons and environments. Moreover, simultaneous selection using weighted average of absolute scores from the singular value decomposition (WAASB) and multi-trait stability index (MTSI) revealed six highly recommended genotypes with high stability and crop productivity. The winning genotypes under specific environment can be utilized as useful genetic materials to develop regional specialty cultivars, and recommended genotypes can be used as elite climate-resilient parents to improve yield-potential and reduce methane emission as part to accomplish carbon-neutrality.

  • PDF