• Title/Summary/Keyword: specific power.

Search Result 2,635, Processing Time 0.027 seconds

An Assessment on the Containment Integrity of Korean Standard Nuclear Power Plants Against Direct Containment Heating Loads

  • Seo, Kyung-Woo;Kim, Moo-Hwan;Lee, Byung-Chul;Jeun, Gyoo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.468-482
    • /
    • 2001
  • As a process of Direct Containment Heating (DCH) issue resolution for Korean Standard Nuclear Power Plants (KSNPs), a containment load/strength assessment with two different approaches, the probabilistic and the deterministic, was performed with all plant-specific and phenomena-specific data. In case of the probabilistic approach, the framework developed to support the Zion DCH study, Two-Cell Equilibrium (TCE) coupled with Latin Hypercubic Sampling (LHS), provided a very efficient tool to resolve DCH issue. In case of the deterministic approach, the evaluation methodology using the sophisticated mechanistic computer code, CONTAIN 2.0 was developed, based on findings from DCH-related experiments or analyses. For three bounding scenarios designated as Scenarios V, Va, and VI, the calculation results of TCE/LHS and CONTAIN 2.0 with the conservatism or typical estimation for uncertain parameters, showed that the containment failure resulted from DCH loads was not likely to occur. To verify that these two approaches might be conservative , the containment loads resulting from typical high-pressure accident scenarios (SBO and SBLOCA) for KSNPs were also predicted. The CONTAIN 2.0 calculations with boundary and initial conditions from the MAAP4 predictions, including the sensitivity calculations for DCH phenomenological parameters, have confirmed that the predicted containment pressure and temperature were much below those from these two approaches, and, therefore, DCH issue for KSNPS might be not a problem.

  • PDF

Formation of Ohmic Contact to AlGaN/GaN Heterostructure on Sapphire

  • Kim, Zin-Sig;Ahn, Hokyun;Lim, Jong-Won;Nam, Eunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.292-292
    • /
    • 2014
  • Wide band gap semiconductors, such as III-nitrides (GaN, AlN, InN, and their alloys), SiC, and diamond are expected to play an important role in the next-generation electronic devices. Specifically, GaN-based high electron mobility transistors (HEMTs) have been targeted for high power, high frequency, and high temperature operation electronic devices for mobile communication systems, radars, and power electronics because of their high critical breakdown fields, high saturation velocities, and high thermal conductivities. For the stable operation, high power, high frequency and high breakdown voltage and high current density, the fabrication methods have to be optimized with considerable attention. In this study, low ohmic contact resistance and smooth surface morphology to AlGaN/GaN on 2 inch c-plane sapphire substrate has been obtained with stepwise annealing at three different temperatures. The metallization was performed under deposition of a composite metal layer of Ti/Al/Ni/Au with thickness. After multi-layer metal stacking, rapid thermal annealing (RTA) process was applied with stepwise annealing temperature program profile. As results, we obtained a minimum specific contact resistance of $1.6{\times}10^{-7}{\Omega}cm2$.

  • PDF

Effect of Ultrasonic Energy in the Engine using Diesel Fuel Blended Rape-seed Oil (유채혼합유를 사용하는 기관에서 초음파에너지의 영향)

  • Kwon, K.R.;Ko, K.N.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.5-10
    • /
    • 2005
  • The effect of ultrasonic energy for diesel fuel and blend oil has been revealed in this paper. The experimental setup consisted of a high speed diesel engine with 4 cylinder, dynamometer and ultrasonic fuel feeding system. Ultrasonic energy was added to diesel fuel and blend oil, which is a blend of diesel fuel and rape-seed oil. As engine speed was changed, engine torque and power, brake specific fuel consumption and thermal efficiency were measured in detail. As the results, by adding ultrasonic energy to diesel fuel and blend oil, the engine performance was improved in range of the experiment. The effect of improvement on brake specific fuel consumption and thermal efficiency for blend oil is higher than that for diesel fuel. When ultrasonic energy was added to diesel fuel or blend oil, a rise in engine torque for diesel fuel was higher than that for blend oil, but the effect of ultrasonic energy was small. From these results, it may be desirable to add ultrasonic energy to blend oil for the use of blend oil to diesel engine.

  • PDF

A techno-economic analysis of partial repowering of a 210 MW coal fired power plant

  • Samanta, Samiran;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • v.3 no.3
    • /
    • pp.167-179
    • /
    • 2015
  • This paper presents a techno-economic analysis of a partial repowering scheme for an existing 210 MW coal fired power plant by integrating a gas turbine and by employing waste heat recovery. In this repowering scheme, one of the four operating coal mills is taken out and a new natural gas fired gas turbine (GT) block is considered to be integrated, whose exhaust is fed to the furnace of the existing boiler. Feedwater heating is proposed through the utilization of waste heat of the boiler exhaust gas. From the thermodynamic analysis it is seen that the proposed repowering scheme helps to increase the plant capacity by about 28% and the overall efficiency by 27%. It also results in 21% reduction in the plant heat rate and 29% reduction in the specific $CO_2$ emissions. The economic analysis reveals that the partial repowering scheme is cost effective resulting in a reduction of the unit cost of electricity (UCOE) by 8.4%. The economic analysis further shows that the UCOE of the repowered plant is lower than that of a new green-field power plant of similar capacity.

Electrical Characteristics and Fabrication of NiCr/NiCrSi Alloy Film for High Precision Thin Film Resistors (고정밀급 박막저항을 위한 NiCr/NiCrSi박막의 제조 및 전기적 특성)

  • Lee, Boong-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.520-526
    • /
    • 2007
  • In order to acquire fundamental informations to fabricate high precision thin film resistors, NiCr/NiCrSi alloy films were prepared using Ni and Cr targets. Effect of composition on the electrical properties of the NiCr/NiCrSi alloy film were then investigated. Considering the effect of Si doping on the electrical and material characteristics, the lower TCR (temperature coefficient of resistance) values could be achieved for samples with Ni/Cr ratio of $0.8{\sim}1.5$ (in a range of relative higher specific resistivity and Cr composition of $40\;wt%{\sim}55\;wt%$) and with Si doping. Consequently, the sample prepared using a DC power showed a good TCR of $-25\;ppm/^{\circ}C$, which implies that increase of specific resistivity and decrease of TCR would be achieved more efficiently not for Ni-Cr binary material but for Si doped Ni-Cr ternary material, and not using RF power but using DC power in the sputtering process.

A Study on the Operational Events of Domestic Nuclear Power Plants for Multi-unit Risk (원전 다수기 리스크 평가를 위한 국내 원전 사건이력 조사 연구)

  • Lim, Hak Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.167-174
    • /
    • 2019
  • Compared to a single nuclear power plant (NPP) risk, the commonalities existing in the multiple NPPs attribute the characteristics of the multi-unit risk. If there is no commonality among the multiple NPPs, there will be no dependency among the risks of multiple NPPs. Therefore, understanding the commonality causing multi-unit events is essential to assessing the multi-unit risk, and identifying the characteristics of the multi-unit risk is necessary not only to select the scope and method for the multi-unit risk assessment, but also to analyze the data of the multi-unit events. In order to develop Korea-specific multi-unit risk assessment technology, we analyze the multi-unit commonalities included in the operational experiences of domestic NPPs. We identified 58 cases of multi-unit events through detailed review of domestic nuclear power plant event reports over the past 10 years, and the multi-unit events were classified into six commonalities to identify Korea-specific characteristics of multi-unit events. The identified characteristics can be used to understand and manage domestic multi-unit risks. It can also be used as a basis for modeling multi-unit events for multi-unit risk assessment.

Development of a Velocity Compounded Impulse Turbine for the 75ton Liquid Rocket Engine Application (75톤급 액체로켓엔진 터보펌프용 속도복식 터빈개발)

  • Jeong, Eun-Hwan;Lee, Hang-Gi;Park, Pyun-Goo;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.40-46
    • /
    • 2011
  • A velocity-compounded(VC) turbine of the 75ton turbopump was developed as an improved performance backup for a single-rotor base-line turbine. Curvic coupling was used for the connection between rotors and shaft. High temperature torsion test and spin test was performed for the curvic coupling design validation. Aerodynamic performance test revealed that the developed VC turbine can generate 20.5% higher specific power than the base-line turbine. It has been measured that $1^{st}$ rotor of the subject turbine generates 74.1% of total power at design operating condition.

The Factors that Can be Affected by the Function of foundations (파운데이션 기능에 영향을 미치는 인자)

  • Kim, Ju-Duck;Ju, Rhan;Lee, Sun-Young
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.202-213
    • /
    • 2002
  • There have been a lot of research going on for developing a new blend of cosmetic ingredients. such as Porous sphere power, High functional composition power, Ultrafine power, UV sunscreen agent, Flat titanium dioxide etc. It's said that these ingredients will have multi functional effects on foundation users. Regarding foundation products. UV care effect is basic and consumers want special feelings for skin and its'transparency. People also look for a high performance foundation which helps skin stay shineless and flawless with a longlasting beautiful finish. A lot of cosmetics are produced in small quantities resulting in a greater variety depending on consumers'ages, hobbies, trends, season and environment, so more specific cosmetics should be developed. To satisfy more specific clientele, It is expected that special care product will come out. Foundations for the elderly and men are already being considered as well as ones for trans-genders are possibility. It's considered that fecundation is not a makeup but something in skin-care categories based on the development and production of high performonce foundations.

New methodologies to derive discharge limits considering operational flexibility of radioactive effluents from Korean nuclear power plants based on historical discharge data

  • Kang, Ji Su;Cheong, Jae Hak
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1003-1015
    • /
    • 2022
  • The new methodologies to derive discharge limits considering operational flexibility according to international safety standards were developed to help reduce the environmental releases of radioactive effluents from nuclear power plants (NPPs). To overcome the limitations of the two existing methods to set up discharge limits assuming a specific statistical distribution of the effluent discharge, two modified equations were newly proposed to directly derive a particular discharge limits corresponding to the target 'compliance probability' based on the actual annual discharge data for a specific NPP and radionuclide groups. By applying these to the actual yearly discharge data of 14 Korean NPPs for 7 radionuclide groups for the past 20 years, the applicability of two new methodologies to actual cases was demonstrated. The 'characteristic value' with approximately a 90% compliance probability for each Korean NPP and radionuclide group was proposed based on the results. The new approaches for setting up the discharge limits and the characteristic values developed in this study are expected to be effectively utilized to foster operator's efforts to progressively reduce the environmental releases of radioactive effluents of NPPs relative to the previous discharge data considering operational flexibilities.

Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake (포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.