• Title/Summary/Keyword: specific plant

Search Result 2,642, Processing Time 0.043 seconds

A plant-specific HRA sensitivity analysis considering dynamic operator actions and accident management actions

  • Kancev, Dusko
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1983-1989
    • /
    • 2020
  • The human reliability analysis is a method by which, in general terms, the human impact to the safety and risk of a nuclear power plant operation can be modelled, quantified and analysed. It is an indispensable element of the PSA process within the nuclear industry nowadays. The paper herein presents a sensitivity study of the human reliability analysis performed on a real nuclear power plant-specific probabilistic safety assessment model. The analysis is performed on a pre-selected set of post-initiator operator actions. The purpose of the study is to investigate the impact of these operator actions on the plant risk by altering their corresponding human error probabilities in a wide spectrum. The results direct the fact that the future effort should be focused on maintaining the current human reliability level, i.e. not letting it worsen, rather than improving it.

Rapid Identification of Potato Scab Causing Streptomyces spp. from Soil Using Pathogenicity Specific Primers

  • Kim, Jeom-Soon;Lee, Young-Gyu;Ryu, Kyoung-Yul;Kim, Jong-Tae;Cheon, Jeong-Uk
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.134.2-135
    • /
    • 2003
  • The plant-pathogenic species S. scabies, S. acidiscabies, and S. turgidiscabies cause the scab disease of potato and produce the phytotoxins, thaxtomins. necl, a gene conferring a necrogenic phenotype, is involved in pathogenicity and physically linked to the thaxtomin A biosynthetic genes. Identification of the pathogenic strains of Streptomyces from soil was performed through the polymerase chain reaction by using specific pathogenicity primer sets derived from the necl gene sequences of Streptomyces smbies. The DNA was extracted from soil using a bead-beating machine and modifications of the FastPrep system. The DNA was suitable for direct use in the PCR. The PCR products showed the bands of approximately 460 bp. This methods can be very usuful in identifying species responsible for scab diseases and studying on the ecology of plant-pathogenic Streptomyces spp.

  • PDF

Distribution of specific plants and Hydrophytes in the wetland of Youngsan River (영산강집수역의 수생식물과 특정식물분포)

  • 김하송;임병선;이점숙
    • Korean Journal of Plant Resources
    • /
    • v.12 no.4
    • /
    • pp.303-311
    • /
    • 1999
  • This study had been performed to clarify the distribution of specific plants and hydrophytes in the 27 sites of drainage basins located in Youngsan River at the period of June 1997 to July 1999. Hydrophytes were composed of 32 familis 86 species and hygrophytes 36 familis 135 species. Among hydrophytes, emerged plant, floating-leaved plant, submerged plants and free floating hydrophytes were 52, 15, 12, and 7 species respectively in this investigation. Threatened species were Drosera rotundifolia, Utricularia racemosa, Utricularia bifida, Utricularia japonica, Hydrocharis dubia, Endangered species were Brasenia schreberi and Euryale ferox.

  • PDF

Biological Weed Control with Plant Pathogenic Microorganisms.

  • Hong, Yeon-Kyu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.15-18
    • /
    • 2003
  • Contemporary biological control system includes the use of fungi to control weeds in agricultural ecosystems and forests. Fungal pathogens of weeds that are highly virulent and specific to target weeds, and able to be produced massively by artificial culture could be applied like chemical herbicides over the weeds.(중략)

  • PDF

Production of stable chloroplast-transformed plants in potato (Solanum tuberosum L.) (안정적 감자 엽록체 형질전환 식물체 생산)

  • Min, Sung-Ran;Jeong, Won-Joong;Park, Ji-Hyun;Lyu, Jae-Il;Lee, Jeong-Hee;Oh, Kwang-Hoon;Chung, Hwa-Jee;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • Chloroplast genetic engineering of higher plants offers several unique advantages compared with nuclear genome transformation, such as high levels of transgene expression, a lack of position effect due to site-specific transgene integration by homologous recombination, multigene engineering in a single transformation event and reducing risks of gene flow via pollen due to maternal inheritance. We established a reproducible chloroplast transformation system of potato using a tobacco specific plastid transformation vector, pCtVG (trnI-Prrn-aadA-mgfp-TpsbA-trnA). Stable transgene integration into chloroplast genomes and the homoplasmic state of the transgenome were confirmed by PCR and Southern blot analyses. Northern, immunoblot analysis, and GFP fluorescence imaging revealed high expression and accumulation of GFP in the plastids of potato leaves. This system would provide new opportunities for genetic improvement and mass production of value added foreign proteins in this crop.