• Title/Summary/Keyword: specific parameter

Search Result 788, Processing Time 0.024 seconds

Development of a Musculoskeletal Model for Functional Electrical Stimulation - Noninvasive Estimation of Musculoskeletal Model Parameters at Knee Joint - (기능적 전기자극을 위한 근골격계 모델 개발 - 무릎관절에서의 근골격계 모델 특성치의 비침습적 추정 -)

  • 엄광문
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.293-301
    • /
    • 2001
  • A patient-specific musculoskeletal model, whose parameters can be identified noninvasively, was developed for the automatic generation of patient-specific stimulation pattern in FES. The musculotendon system was modeled as a torque-generator and all the passive systems of the musculotendon working at the same joint were included in the skeletal model. Through this, it became possible that the whole model to be identified by using the experimental joint torque or the joint angle trajectories. The model parameters were grouped as recruitment of muscle fibers, passive skeletal system, static and dynamic musculotendon systems, which were identified later in sequence. The parameters in each group were successfully estimated and the maximum normalized RMS errors in all the estimation process was 8%. The model predictions with estimated parameter values were in a good agreement with the experimental results for the sinusoidal, triangular and sawlike stimulation, where the normalized RMS error was less than 17%, Above results show that the suggested musculoskeletal model and its parameter estimation method is reliable.

  • PDF

Interaction between Particle with Dual Ligand and Cell under Flow (유동장내 길이가 다른 두 개의 리간드가 부착된 입자-세포간 상호작용)

  • Yoon, Jung Hyun;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.71-80
    • /
    • 2022
  • The interaction between dual-ligand decorated particle-based delivery system and target cell under shear flow is predicted using probability model developed. We assumed the two kinds of ligand are decorated on the surface of the particle with 10% length difference. Fixed with other biophysical parameters, a study on the particle-cell interaction for the different non-specific interaction parameter is performed. To induce the firm adhesion, short ligand-receptor should be engaged. Also, it is shown that the rational design of ligand-receptor interaction, including receptor number, specific interaction parameter, kinds of ligand-receptor, etc., should be considered.

Development of a bridge-specific fragility methodology to improve the seismic resilience of bridges

  • Dukes, Jazalyn;Mangalathu, Sujith;Padgett, Jamie E.;DesRoches, Reginald
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.253-261
    • /
    • 2018
  • This article details a bridge-specific fragility method developed to enhance the seismic design and resilience of bridges. Current seismic design processes provide guidance for the design of a bridge that will not collapse during a design hazard event. However, they do not provide performance information of the bridge at different hazard levels or due to design changes. Therefore, there is a need for a supplement to this design process that will provide statistical information on the performance of a bridge, beyond traditional emphases on collapse prevention. This article proposes a bridge-specific parameterized fragility method to enable efficient estimation of various levels of damage probability for alternative bridge design parameters. A multi-parameter demand model is developed to incorporate bridge design details directly in the fragility estimation. Monte Carlo simulation and Logistic regression are used to determine the fragility of the bridge or bridge component. The resulting parameterized fragility model offers a basis for a bridge-specific design tool to explore the influence of design parameter variation on the expected performance of a bridge. When used as part of the design process, these tools can help to transform a prescriptive approach into a more performance-based approach, efficiently providing probabilistic performance information about a new bridge design. An example of the method and resulting fragility estimation is presented.

Dynamic to static eccentricity ratio for site-specific earthquakes

  • Kamatchi, P.;Ramana, G.V.;Nagpal, A.K.;Iyer, Nagesh R.;Bhat, J.A.
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.391-413
    • /
    • 2015
  • Damage of torsionally coupled buildings situated on soil sites has been reported in literature, however no site-specific studies are available for torsionally coupled buildings having site characteristics as a parameter. Effect of torsion is being accounted in seismic codes by the provision of design eccentricity where the dynamic to static eccentricity ratio is a parameter. In this paper, a methodology to determine dynamic to static eccentricity ratio of torsionally coupled buildings has been demonstrated for Delhi region for two torsionally coupled buildings on three soil sites. The variations of average and standard deviations of frame shears for stiff and flexible edges are studied for four eccentricity ratios for the two buildings for the three sites. From the limited studies made, it is observed that the dynamic to static eccentricity ratios observed for site-specific earthquakes are different from Indian seismic code specified value, hence a proposal is made to include a comment in Indian seismic code. Methodology proposed in this paper can be adopted for any region, for the estimation of dynamic to static eccentricity ratio for site specific earthquake.

Estimation of A New Initial Parameter for the Lloyd-Max Algorithm (로이드-맥스 알고리즘을 위한 새로운 초기 파라메타의 추정)

  • Eon Kyeong Joo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.26-32
    • /
    • 1994
  • The Lloyd-Max algorithm is an iterative scheme for design of the minimum mean square error quantizer. It is very simple in concept and easy to program into a computer. However its convergence and accuracy are primarily dependent upon the accuracy of the initial parameter. In this paper, a new initial parameter which converges to a specific value when the number of output levels becomes large is selected. And an estimator using curve fitting techique is suggested. In addition, performance of the proposed method is shown to be superior to that of the existing methods in accuracy and convergence.

  • PDF

SLA Parameter Measurement Of Policy Routing Network (Policy Routing Network에서의 SLA 파라메터 측정)

  • Shim, Hoi-Jung;Nam, Ji-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10b
    • /
    • pp.1597-1600
    • /
    • 2001
  • In-Service-Monitoring을 통하여 네트웍 계층에서 성능저하와 전달되어지는 QOS의 영향을 감시하여 Pro-Active 매니지먼트가 가능하다. 그 결과로서 SLA 보증을 위반하기 전에 성능저하를 조기 발견하여 행동을 취한 수 있게 한다. 본 논문에서는 사용자의 요구조건을 만족하기 위한 네트웍의 구성과 SLA 측정의 제약조건들을 고려하고 Policy Based Routing이 적용되는 네트웍에서 Technology-Specific Parameter인 IP Packet Loss Ratio, IP 패킷전송지연, 패킷지터, 가용도등의 SLA Parameter를 측정하였다.

  • PDF

지표수 수위변동을 이용한 대수층 수리상수 추정

  • 하규철;조민조
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.426-430
    • /
    • 2004
  • In aquifers connected hydraulically, the levels of groundwater respond to stream stages. Analytical solutions by Laplace transform and convolution integral are used to get some response patterns about hydrogeoiogic parameter such as hydraulic conductivity, specific storage in confined aquifer. This method has the advantage to do hydrogeologic parameter estimations only with stream stage changes.

  • PDF

A Study About Radionuclides Migration Behavior in Terms of Solubility at Gyeongju Low- and Intermediate-Level Radioactive Waste (LILW) Repository

  • Park, Sang June;Byon, Jihyang;Lee, Jun-Yeop;Ahn, Seokyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.113-121
    • /
    • 2021
  • A safety assessment of radioactive waste repositories is a mandatory requirement process because there are possible radiological hazards owing to radionuclide migration from radioactive waste to the biosphere. For a reliable safety assessment, it is important to establish a parameter database that reflects the site-specific characteristics of the disposal facility and repository site. From this perspective, solubility, a major geochemical parameter, has been chosen as an important parameter for modeling the migration behavior of radionuclides. The solubilities were derived for Am, Ni, Tc, and U, which were major radionuclides in this study, and on-site groundwater data reflecting the operational conditions of the Gyeongju low and intermediate level radioactive waste (LILW) repository were applied to reflect the site-specific characteristics. The radiation dose was derived by applying the solubility and radionuclide inventory data to the RESRAD-OFFSITE code, and sensitivity analysis of the dose according to the solubility variation was performed. As a result, owing to the low amount of radionuclide inventory, the dose variation was insignificant. The derived solubility can be used as the main input data for the safety assessment of the Gyeongju LILW repository in the future.

Monitoring the asymmetry parameter of a skew-normal distribution

  • Hyun Jun Kim;Jaeheon Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.129-142
    • /
    • 2024
  • In various industries, especially manufacturing and chemical industries, it is often observed that the distribution of a specific process, initially having followed a normal distribution, becomes skewed as a result of unexpected causes. That is, a process deviates from a normal distribution and becomes a skewed distribution. The skew-normal (SN) distribution is one of the most employed models to characterize such processes. The shape of this distribution is determined by the asymmetry parameter. When this parameter is set to zero, the distribution is equal to the normal distribution. Moreover, when there is a shift in the asymmetry parameter, the mean and variance of a SN distribution shift accordingly. In this paper, we propose procedures for monitoring the asymmetry parameter, based on the statistic derived from the noncentral t-distribution. After applying the statistic to Shewhart and the exponentially weighted moving average (EWMA) charts, we evaluate the performance of the proposed procedures and compare it with previously studied procedures based on other skewness statistics.

Catchment Responses in Time and Space to Parameter Uncertainty in Distributed Rainfall-Runoff Modeling (분포형 강우-유출 모형의 매개변수 불확실성에 대한 시.공간적 유역 응답)

  • Lee, Gi-Ha;Takara, Kaoru;Tachikawa, Yasuto;Sayama, Takahiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2215-2219
    • /
    • 2009
  • For model calibration in rainfall-runoff modeling, streamflow data at a specific outlet is obviously required but is not sufficient to identify parameters of a model since numerous parameter combinations can result in very similar model performance measures (i.e. objective functions) and indistinguishable simulated hydrographs. This phenomenon has been called 'equifinality' due to inherent parameter uncertainty involved in rainfall-runoff modeling. This study aims to investigate catchment responses in time and space to various uncertain parameter sets in distributed rainfall-runoff modeling. Seven plausible (or behavioral) parameter sets, which guarantee identically-good model performances, were sampled using deterministic and stochastic optimization methods entitled SCE and SCEM, respectively. Then, we applied them to a computational tracer method linked with a distributed rainfall-runoff model in order to trace and visualize potential origins of streamflow at a catchment outlet. The results showed that all hydrograph simulations based on the plausible parameter sets were performed equally well while internal catchment responses to them showed totally different aspects; different parameter values led to different distributions with respect to the streamflow origins in space and time despite identical simulated hydrographs. Additional information provided by the computational tracer method may be utilized as a complementary constraint for filtering out non-physical parameter set(s) (or reducing parameter uncertainty) in distributed rainfall-runoff modeling.

  • PDF