• 제목/요약/키워드: specific inhibitor

검색결과 737건 처리시간 0.028초

람세균 Synechocystis sp. PCC 6803 PTX의 주광성 운동에 미치는 몇가지 대사 억제제의 효과 (Effects of Some Metabolic Inhibitors on Phototactic Movement in Cyanobacterium Synechosystis sp. PCC 6803 PTX)

  • 박영총
    • Journal of Plant Biology
    • /
    • 제38권1호
    • /
    • pp.87-93
    • /
    • 1995
  • 최근에 Synechocystis sp. PCC 6803 중에 한 균주가 고체 한천 배지상에서 일정한 조명(300-1000 lux) 방향을 따라 활주 운동하는 것을 관찰하여 이 종을 S. 6803 PTX라고 명명하고 이의 주광성 운동에 대한 생리학적 특징을 이해하기 위하여 몇 가지 대사 억제제와 신호 전달 차단제의 주광성 운동에 미치는 효과를 조사하였다. DCMU는 광계 II로부터 광계 I의 일차 전자 수용체인 플라스토퀴논으로의 비순환성 광합성 전자전달을 억제하는 억제자로서 $100\;\mu\textrm{M}$의 농도에서는 주광성 운동을 억제하지 못하였다. 그러나 호흡에 의한 전자전달 억제제인 sodium azide를 처리하였을 경우에는 S. 6803 PTX에서 심하게 장해를 받았다. 이러한 관찰 결과는 주광성 운동의 주동력원이 광인산화 과정보다는 호흡에 의한 산화적인 인산화과정에 주로 연관되어 있음을 보여주었다. 또한, 세포를 CCCP나 DNP와 같은 막상의 uncoupler를 처리하였을 때, 세포내 ATP 농도를 저하시키거나 세포질막에 수소 이온의 전기화학구배($\Delta\mu_{H}+$)를 제거시키나, 이러한 화합물들은 주광성 운동에 뚜렷한 영향은 주지 못하였다. 이러한 결과와는 달리, H+-F0F1 ATPase에 민감하게 억제 작용을 나타내는 DCCD나 NBD의 처리는 세포내 ATP만 고갈시키고 막상에서 $\Delta\mu_{H}+$는 그대로 유지시키는 작용을 하는데, 이러한 DCCD나 NBD는 주광성 운동에 대해서는 심하게 억제 현상을 나타내었다. 또한, 특이성 calcium ionophore 중의 하나인 A23187의 처리는 양성 주광성에 심하게 장해를 주었다. 아마도 Ca2+ 유동은 주광운동 방향성의 신호전달 과정에 중요하게 관련되어 있는 것으로 나타났다. 마지막으로 S-adenosyl methionine과 같은 메틸 공여체의 고갈이 S. 6803 PTX 균주의 주광성 반응에 영향을 주는지를 알아보기 위하여 에티오닌을 BG11을 한천 배지에 첨가하였다. 이 생물종의 광운동은 에티오닌의 농도가 증가됨에 따라 일정하게 억제되다가 0.5mM에서 주광성 운동을 완전히 억제시켰다. 이것은 광수용 기작이 Escherichia coil나 Salmonella typhimurium에서 발견된 메틸기 수용 주화성 단백질과 같은 메틸화/탈메틸화 과정에 의하여 조절될 가능성을 보여주고 있음을 의미한다.

  • PDF

Human Acyl-CoA: Cholesterol Acyltransferase (hACAT) Inhibitory Activities of Triterpenoids from Roots of Glycine max (L.) Merr

  • Lee, Jin-Hwan;Ryu, Young-Bae;Lee, Byong-Won;Kim, Jin-Hyo;Lee, Woo-Song;Park, Yong-Dae;Jeong, Tae-Sook;Park, Ki-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권3호
    • /
    • pp.615-619
    • /
    • 2008
  • Eight triterpenoids, six lanostanes 1-6, one lupenane 7, and one oleanane 8, were isolated by bioactivity-guided fractionation of the ethylacetate extract from roots of Glycine max (L.) Merr. All isolated compounds were examined for their inhibitory activities against human ACAT-1 (hACAT-1) and human ACAT-2 (hACAT-2). Among them, three triterpenoids showed potent hACAT inhibitory activities, (24R)-ethylcholest-5-ene-3,7-diol (1) and 3b -hydroxylup-20(29)-en-28-oic acid (7) exhibited more potent inhibitory activity against hACAT-1 (1: IC50 = 25.0 1.2 and 7: IC50 = 11.5 0.4 m M) than hACAT-2 (1: IC50 = 102.0 5.4 and 7: IC50 = 33.9 3.7 m M), respectively. Interestingly, 5a ,8a -epidioxy-24(R)-methylcholesta-6,22-diene-3b -ol (4) has proven to be a specific inhibitor against hACAT-1 (IC50 = 38.7 0.8 m M) compared to hACAT-2 (IC50 >200). In conclusion, this is the first study to demonstrate that triterpenoids of G. max have potent inhibitory activities against hACAT-1 and hACAT-2.

Effects of ginseol k-g3, an Rg3-enriched fraction, on scopolamine-induced memory impairment and learning deficit in mice

  • Pena, Ike Dela;Yoon, Seo Young;Kim, Hee Jin;Park, Sejin;Hong, Eun Young;Ryu, Jong Hoon;Park, Il Ho;Cheong, Jae Hoon
    • Journal of Ginseng Research
    • /
    • 제38권1호
    • /
    • pp.1-7
    • /
    • 2014
  • Background: Although ginsenosides such as Rg1, Rb1 and Rg3 have shown promise as potential nutraceuticals for cognitive impairment, their use has been limited due to high production cost and low potency. In particular, the process of extracting pure Rg3 from ginseng is laborious and expensive. Methods: We described the methods in preparing ginseol k-g3, an Rg3-enriched fraction, and evaluated its effects on scopolamine-induced memory impairment in mice. Results: Ginseol k-g3 (25-200 mg/kg) significantly reversed scopolamine-induced cognitive impairment in the passive avoidance, but not in Y-maze testing. Ginseol k-g3 (50 and 200 mg/kg) improved escape latency in training trials and increased swimming times within the target zone of the Morris water maze. The effect of ginseol k-g3 on the water maze task was more potent than that of Rg3 or Red ginseng. Acute or subchronic (6 d) treatment of ginseol k-g3 did not alter normal locomotor activity of mice in an open field. Ginseol k-g3 did not inhibit acetylcholinesterase activity, unlike donezepil, an acetylcholinesterase inhibitor. Rg3 enrichment through the ginseol k-g3 fraction enhanced the efficacy of Rg3 in scopolamine-induced memory impairment in mice as demonstrated in the Morris water maze task. Conclusion: The effects of ginseol k-g3 in ameliorating scopolamine-induced memory impairment in the passive avoidance and Morris water maze tests indicate its specific influence on reference or long-term memory. The mechanism underlying the reversal of scopolamine-induced amnesia by ginseol k-g3 is not yet known, but is not related to anticholinesterase-like activity.

진피 에탄올 추출물의 AMPK signaling pathway를 통한 3T3-L1 지방전구세포의 adipogenesis 억제에 관한 연구 (Ethanol Extracts of Citrus Peel Inhibits Adipogenesis through AMPK Signaling Pathway in 3T3-L1 Preadipocytes)

  • 조현균;한민호;홍수현;최영현;박철
    • 생명과학회지
    • /
    • 제25권3호
    • /
    • pp.285-292
    • /
    • 2015
  • 본 연구에서는 3T3-L1 지방전구세포가 지방세포로 분화되는 과정에서 진피 에탄올 추출물(ethanol extracts of citrus peel, EECP)이 유발하는 항비만 효능에 대해서 조사하였다. 3T3-L1 세포의 생존율 및 증식에 영향을 미치지 않는 농도의 EECP를 처리하였을 경우 지방세포에서 특징적으로 나타나는 lipid droplet의 형성과 triglyceride의 생성도 억제되는 것으로 나타났다. EECP가 유발하는 지방세포로의 분화억제에는 PPARγ, C/EBPα, C/EBPβ 및 SREBP-1c 등과 같은 adipogenic transcription factors의 발현억제가 관여하는 것으로 나타났으며, 그 결과로 aP2 및 Leptin과 같은 adipocyte expressed genes의 발현도 억제되는 것으로 조사되었다. 또한 EECP는 AMPK 및 ACC의 인산화를 유발하였으며, AMPK 억제제인 Compound C를 이용하여 AMPK의 활성을 억제하였을 경우 EECP에 의한 AMPK의 인산화와 adipogenic transcription factors의 억제현상이 회복되었다. 이상의 결과에서 EECP는 AMPK signaling pathway를 통하여 항비만 효능을 가진다는 것을 알 수 있었으며, 향후 비만 예방 및 억제와 관련된 기능성 소재로서의 진피의 활용 가능성을 제시한 것으로서 그 가치가 매우 높을 것으로 생각된다.

배양심근세포의 산화적 손상에 대한 사물탕의 방어효과 (Protective Effects of Samul-tang on Oxidative Stress induced Death of H9c2 Cardioblast Cells)

  • 조권일;정승원;장재호;이대용;박세욱;이인;신선호;문병순
    • 대한한의학회지
    • /
    • 제26권1호
    • /
    • pp.174-186
    • /
    • 2005
  • Objectives : The water extract of Samul-tang (SMT) has traditionally been used for treatment of ischemic heart and brain damage in oriental medicine. However, little is known about the mechanism by which the water extract of SMT rescues cells from these damages. Methods: This study was designed to investigate the protective mechanisms of SMT on oxidative stress-induced toxicity in H9c2 cardiomyoblast cells. Treatment with $H_2O_2$ markedly induced death of H9c2 cardiomyoblast cells in a dose-dependent manner. Results: The characteristics of H20z-induced death of H9c2 showed apparent apoptotic features such as DNA fragmentation and morphological change. However, SMT significantly reduced both H202-induced cell death and morphological change. The decrease of Bc-2 expression by High were inhibited by SMT. In addition, the increase of Bax expression was also inhibited by SMT. The cotreatment of SMT and $H_2O_2$ in H9c2 cells also induced the phosphorylation of ERK in a time-dependent manner. Moreover, PD98059, a specific inhibitor of ERK1/2 attenuated the protective effects of SMT on $H_2O_2-induced$ toxicity in H9c2 cardiomyoblast cells. These results suggest that both ERK1/2 signaling pathways play important roles in the protective effects of SMT on $H_2O_2-induced$ apoptotic death of H9c2 cells. Also, the expression profile of proteins in $H_2O_2$ cardiomyoblast cells were screened by using two-dimensional (2-D) gel electrophoresis. Among 300 spots resolved in 2-D gels, the comparison of control versus apoptosis cells revealed that signal intensity of 17 spots increased and 11 spots decreased. Conclusions: Taken together, this study suggests that the protectiw effects of the water extract of SMT against oxidative damages may be mediated by the modulation of Bc1-2 and Bax expression via the regulation of the ERK signaling pathway.

  • PDF

Cyanidin-3-glucoside Inhibits ATP-induced Intracellular Free $Ca^{2+}$ Concentration, ROS Formation and Mitochondrial Depolarization in PC12 Cells

  • Perveen, Shazia;Yang, Ji Seon;Ha, Tae Joung;Yoon, Shin Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권4호
    • /
    • pp.297-305
    • /
    • 2014
  • Flavonoids have an ability to suppress various ion channels. We determined whether one of flavonoids, cyanidin-3-glucoside, affects adenosine 5'-triphosphate (ATP)-induced calcium signaling using digital imaging methods for intracellular free $Ca^{2+}$ concentration ([$Ca^{2+}$]i), reactive oxygen species (ROS) and mitochondrial membrane potential in PC12 cells. Treatment with ATP ($100{\mu}M$) for 90 sec induced [$Ca^{2+}$]i increases in PC12 cells. Pretreatment with cyanidin-3-glucoside ($1{\mu}g/ml$ to $100{\mu}g/ml$) for 30 min inhibited the ATP-induced [$Ca^{2+}$]i increases in a concentration-dependent manner ($IC_{50}=15.3{\mu}g/ml$). Pretreatment with cyanidin-3-glucoside ($15{\mu}g/ml$) for 30 min significantly inhibited the ATP-induced [$Ca^{2+}$]i responses following removal of extracellular $Ca^{2+}$ or depletion of intracellular [$Ca^{2+}$]i stores. Cyanidin-3-glucoside also significantly inhibited the relatively specific P2X2 receptor agonist 2-MeSATP-induced [$Ca^{2+}$]i responses. Cyanidin-3-glucoside significantly inhibited the thapsigargin or ATP-induced store-operated calcium entry. Cyanidin-3-glucoside significantly inhibited the ATP-induced [$Ca^{2+}$]i responses in the presence of nimodipine and ${\omega}$-conotoxin. Cyanidin-3-glucoside also significantly inhibited KCl (50 mM)-induced [$Ca^{2+}$]i increases. Cyanidin-3-glucoside significantly inhibited ATP-induced mitochondrial depolarization. The intracellular $Ca^{2+}$ chelator BAPTA-AM or the mitochondrial $Ca^{2+}$ uniporter inhibitor RU360 blocked the ATP-induced mitochondrial depolarization in the presence of cyanidin-3-glucoside. Cyanidin-3-glucoside blocked ATP-induced formation of ROS. BAPTA-AM further decreased the formation of ROS in the presence of cyanidin-3-glucoside. All these results suggest that cyanidin-3-glucoside inhibits ATP-induced calcium signaling in PC12 cells by inhibiting multiple pathways which are the influx of extracellular $Ca^{2+}$ through the nimodipine and ${\omega}$-conotoxin-sensitive and -insensitive pathways and the release of $Ca^{2+}$ from intracellular stores. In addition, cyanidin-3-glucoside inhibits ATP-induced formation of ROS by inhibiting $Ca^{2+}$-induced mitochondrial depolarization.

정상 인체 기관지 상피세포에서 콜히친의 Interleukin-1 수용체 길항제 생성자극 (IL-1Ra Elaboration by Colchicine Stimulation in Normal Human Bronchial Epithelial Cells)

  • 이재형;김상헌;김태형;손장원;윤호주;신동호;박성수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제63권2호
    • /
    • pp.145-153
    • /
    • 2007
  • 연구배경: 천식은 기류장애, 기도과민성 및 기도염증을 특징으로 하는 질환이다. 콜히친은 안전하고 저렴한 항염증 면역조절제로서 천식치료에 효과가 있다는 보고가 있으며, IL-1Ra는 천식을 포함한 인체 내 염증질환에 있어 항염증효과를 매개하는 대표적인 물질이다. 본 연구에서는 기도 내에서 콜히친에 의한 항염증작용이 IL-1Ra에 의해 매개될 수 있다는 가설을 세우고 이를 실험적으로 증명하고자 하였다. 방법: 정상 인체 기관지 상피세포와 RAW 264.7 세포, BALB/c 쥐에게 콜히친을 투여한 후 IL-1Ra의 생성을 ELISA, Western분석, RT-PCR 을 통해 측정하였다. 결과: 정상 인체 기관지 상피세포에서 콜히친의 투여농도가 증가함에 따라, 또한 투여 후 시간이 지남에 따라 IL-1Ra의 생성이 증가하였다. 이러한 IL-1Ra의 증가는 대표적인 MAPK경로 억제제인 PD98059에 의해 억제되었다. 콜히친의 IL-1Ra 자극효과는 BALB/c 쥐의 기관지 폐포세척액과 폐조직에서도 관찰되었다. 결론: 기도에서 콜히친은 생체 내와 생체 외에서 IL-1Ra의 생성을 유도하고 IL-1Ra를 통한 항염증 작용을 할 것으로 보이며, 적어도 콜히친에 의한 IL-1Ra의 생성에는 MAPK경로가 관여할 것으로 사료된다.

Hep3B 간암세포에서 개똥쑥 추출물에 의한 Cell Cycle Arrest 효과 (Cell Cycle Arrest Effects by Artemisia annua Linné in Hep3B Liver Cancer Cell)

  • 김은지;김근태;김보민;임은경;김상용;하성호;김영민;유제근
    • KSBB Journal
    • /
    • 제30권4호
    • /
    • pp.175-181
    • /
    • 2015
  • Cells proliferate via repeating process that growth and division. This process is G1, S, G2 and M four phases consists. Monitoring the progression of the cell cycle is a specific step that to be a continuous process is repeated to adjust the start of the next step. At this time, this process is called a Checkpoint. Currently, there are three known checkpoints that G1-S phase, G2-M phase, and the M phase. In this study, we confirmed that cell cycle arrest effects by ethanol extracts of Artemisia annua Linne (AAE) in Hep3B liver cancer cells. AAE was regulated proteins which involved in cell cycle such as pAkt, pMDM2, p53, p21, pCDK2 (T14/Y15). AAE induced cell cycle arrest in G1 checkpoint through phosphorylation of CDK2. Akt and p53 upstream is inhibited by AAE and p53 activated by non-activated pMDM2, p53 inhibitor. Thereby, activated p53 is transcript to p21 and activated p21 protein is combined with Cyclin E-pCDK2 complex. Therefore, we confirmed that AAE-induced cell cycle arrest was occurred by p21-Cyclin E-pCDK2 complex by inhibition of pAkt signal. Because of this cell cycle can't pass to S phase from G1 phase.

커큐민에 의한 노치발현 조절에서 Sp의 역할 (Role of Sp in the Regulation of Notch1 Gene Expression by Curcumin)

  • 박선영;강용규;배윤희;김수륜;박현주;강영순;김미경;위희준;장혜옥;배문경;우재석;배수경
    • KSBB Journal
    • /
    • 제28권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Curcumin has diverse anticancer activities that lead to tumor growth inhibition of cancer cells and induction of apoptosis. Curcumin is involved in the regulation of multiple genes via transcription factors including NF-${\kappa}B$, STATs, AP1, and SP. Notch signaling plays critical roles in maintaining the balance between cell proliferation, differentiation and apoptosis, and thereby may contribute to the development of various cancers involving breast cancer. This study was to investigate the effects of curcumin on Notch1 gene expression and to explore the underlying mechanism. Here, we found that curcumin decreased the levels of Notch1 mRNA and protein in MDA-MB-231 human breast cancer cells, along with the downregulation of Sp family genes (Sp1, Sp2, Sp3, and Sp4). The repressive effect of curcumin on Notch1 gene transcription was confirmed by performing Notch1 promoter-driven reporter assay and three Sp-binding sites were identified on Notch1 promoter that may act as curcumin-respose elements. Moreover, treatment with mitramycin A, a specific Sp inhibitor, decreased the levels of Notch1 mRNA and protein in human breast cancer cells. Taken together, our results indicate that Notch1 gene expression is downregulated by curcumin, at least in part, through the suppression of Sp family, which may lead to apoptosis in human breast cancer cells.

Modulation of Activator Protein-1 (AP-1) and MAPK Pathway by Flavonoids in Human Prostate Cancer PC3 Cells

  • Gopalakrishnan, Avanthika;Xu, Chang-Jiang;Nair, Sujit S.;Chen, Chi;Hebbar, Vidya;Kong, Ah-Ng Tony
    • Archives of Pharmacal Research
    • /
    • 제29권8호
    • /
    • pp.633-644
    • /
    • 2006
  • In last couple of decades the use of natural compounds like flavonoids as chemopreventive agents has gained much attention. Our current study focuses on identifying chemopreventive flavonoids and their mechanism of action on human prostate cancer cells. Human prostate cancer cells (PC3), stably transfected with activator protein 1 (AP-1) luciferase reporter gene were treated with four main classes of flavonoids namely flavonols, flavones, flavonones, and isoflavones. The maximum AP-1 luciferase induction of about 3 fold over control was observed with $20\;{\mu}M$ concentrations of quercetin, chrysin and genistein and $50\;{\mu}M$ concentration of kaempferol. At higher concentrations, most of the flavonoids demonstrated inhibition of AP-1 activity. The MTS assay for cell viability at 24 h showed that even at a very high concentration $(500\;{\mu}M)$, cell death was minimal for most of the flavonoids. To determine the role of MAPK pathway in the induction of AP-1 by flavonoids, Western blot of phospho MAPK proteins was performed. Four out of the eight flavonoids namely kaempferol, apigenin, genistein and naringenin were used for the Western Blot analysis. Induction of phospho-JNK and phospho-ERK activity was observed after two hour incubation of PC3-AP1 cells with flavonoids. However no induction of phospho-p38 activity was observed. Furthermore, pretreating the cells with specific inhibitors of JNK reduced the AP-1 luciferase activity that was induced by genistein while pretreatment with MEK inhibitor reduced the AP-1 luciferase activity induced by kaempferol. The pharmacological inhibitors did not affect the AP-1 luciferase activity induced by apigenin and naringenin. These results suggest the possible involvement of JNK pathway in genistein induced AP-1 activity while the ERK pathway seems to play an important role in kaempferol induced AP-1 activity.