• 제목/요약/키워드: specific inhibitor

검색결과 732건 처리시간 0.022초

Rabbit Liver and Lung Microsomal Metabolism of $\beta$-Nicotyrine:Isozyme Specificities toward the Oxidation of $\beta$-Nicotyrine

  • 김봉희
    • 한국환경성돌연변이발암원학회지
    • /
    • 제9권2호
    • /
    • pp.87-96
    • /
    • 1989
  • Studies on the biodisposition of beta-nicotyrine by lung and liver microsomes was examined in order to provide a better understanding of its fate in this tissue. beta-nicotyrine (100$\mu$M) was incubated with microsomes (1 mg/ml) prepared from New Zealand White rabbits. The rate of oxidation observed in lung microsomal incubations was 1.7 nmoles $\beta$-nicotyrine oxidized mg$^{-1}$ min$^{-1}$ compared with 2.7 nmoles $\beta$-nicotyrine oxidized mg$^{-1}$ min$^{-1}$ by the liver microsomal preparation. However, when these rates were expressed as a function of cytochrome P-450 content, the specific activity of the metabolic oxidation catalyzed by lung (8.3 nmoles $\beta$-nicotyrine oxidized nmole cytochrome P-450$^{-1}$ min$^{-1}$) was approxiamtely 4 times greater than liver microsomes (2.3 nmoles $\beta$-nicotyrine oxidized nmole cytochrome P-450$^{-1}$ min$^{-1}$). Isozyme studies on the oxidation of $\beta$-nicotyrine employed several methods of altering activities of specific isozymes present in pulmonary microsomes, including the use of the isozyme 2 and 6 specific inhibitor $\alpa$-methyl ABT, metabolic inhibitor(MI) complex formation. The results of this inhibition study would appear to indicate the $\beta$-nicotyrine is metabolized predominantly by pulmonary isozyme 5.

  • PDF

Mornitoring and Identification of Human Astrovirus from Groundwater in Korea Based on Highly Sensitive RT-nested PCR Primer Sets

  • Lee, Siwon;Bae, Kyung Seon;Park, Jihyun;Kim, Jin-Ho;Lee, Jin-Young;Choi, Jiwon;Park, Eung-Roh;You, Kyung-A
    • 대한의생명과학회지
    • /
    • 제27권4호
    • /
    • pp.255-263
    • /
    • 2021
  • Human Astrovirus (HuAstV) is an important gastrointestinal pathogen that is frequently reported worldwide. Monitoring of contaminated groundwater has been suggested since HuAstV is transmitted through the fecal-oral route. This study developed a test method based on conventional reverse transcription (RT)-nested polymerase chain reaction (PCR) that involves SL® non-specific reaction inhibitor for unknown non-specific amplification taking place in the groundwater environment. An optimal method for detecting HuAstV in groundwater sample through analysis and comparison against conventionally reported method was also suggested. The developed method enabled the production of nested PCR amplicon of 630 nt, which is a sufficient length for similarity analysis based on sequencing and genotyping. Amplicons suspected to be HuAstV were amplified in two out of the twenty groundwater samples collected in Korea, presenting 99.77% and 99.73% similarity against HuAstV 1 strain lhar/2011/kor (JN887820.1) in sequencing, respectively. These amplicons were identified as HuAstV 1.

USP14 inhibition regulates tumorigenesis by inducing apoptosis in gastric cancer

  • Mi Yea Lee;Min-Jee Kim;Jun-O Jin;Peter Chang-Whan Lee
    • BMB Reports
    • /
    • 제56권8호
    • /
    • pp.451-456
    • /
    • 2023
  • Deubiquitinases (DUBs) are an essential component of the ubiquitin-proteasome system (UPS). They trim ubiquitin from substrate proteins, thereby preventing them from degradation, and modulate different cellular processes. Ubiquitin-specific protease 14 (USP14) is a DUB that has mainly been studied for its role in tumorigenesis in several cancers. In the present study, we found that the protein levels of USP14 were remarkably higher in gastric cancer tissues than in the adjacent normal tissues. We also demonstrated that the inhibition of USP14 activity using IU1 (an USP14 inhibitor) or the inhibition of USP14 expression using USP14-specific siRNA markedly reduced the viability of gastric cancer cells and suppressed their migratory and invasive abilities. The reduction in gastric cancer cell proliferation due to the inhibition of USP14 activity was a result of the increase in the degree of apoptosis, as evidenced by the increased expression levels of cleaved caspase-3 and cleaved PARP. Furthermore, an experiment using the USP14 inhibitor IU1 revealed that the inhibition of USP14 activity suppressed 5-fluorouracil (5-FU) resistance in GC cells. Collectively, these findings indicate that USP14 plays critical roles in gastric cancer progression and suggest its potential to serve as a novel therapeutic target for gastric cancer treatment.

The number of primitive endoderm cells in the inner cell mass is regulated by platelet-derived growth factor signaling in porcine preimplantation embryos

  • Jong-Nam Oh;Mingyun Lee;Gyung Cheol Choe;Dong-Kyung Lee;Kwang-Hwan Choi;Seung-Hun Kim;Jinsol Jeong;Chang-Kyu Lee
    • Animal Bioscience
    • /
    • 제36권8호
    • /
    • pp.1180-1189
    • /
    • 2023
  • Objective: Discovering the mechanism of cell specification is important to manipulate cellular lineages. To obtain lineage-specific cell lines, the target lineage needs to be promoted, and counterpart lineages should be suppressed. Embryos in the early blastocyst stage possess two different cell populations, the inner cell mass (ICM) and trophectoderm. Then, cells in the ICM segregate into epiblasts (Epi) and primitive endoderm (PrE). PrE cells in embryos show specific expression of platelet-derived growth factor (PDGF) and its receptor, PDGF receptor A (PDGFRA). In this study, we suppressed PDGF signaling using two methods (CRISPR/Cas9 injection and inhibitor treatment) to provide insight into the segregation of embryonic lineages. Methods: CRISPR/Cas9 RNAs were injected into parthenogenetically activated and in vitro fertilized embryos. The PDGF receptor inhibitor AG1296 was treated at 0, 5, 10, and 20 µM concentration. The developmental competence of the embryos and the number of cells expressing marker proteins (SOX2 for ICM and SOX17 for PrE) were measured after the treatments. The expression levels of the marker genes with the inhibitor were examined during embryo development. Results: Microinjection targeting the PDGF receptor (PDGFR) A reduced the number of SOX17-positive cell populations in a subset of day 7 blastocysts (n = 9/12). However, microinjection accompanied diminution of Epi cells in the blastocyst. The PDGF receptor inhibitor AG1296 (5 µM) suppressed SOX17-positive cells without reducing SOX2-positive cells in both parthenogenetic activated and in vitro fertilized embryos. Within the transcriptional target of PDGF signaling, the inhibitor significantly upregulated the Txnip gene in embryos. Conclusion: We identified that PDGF signaling is important to sustain the PrE population in porcine blastocysts. Additionally, treatment with inhibitors was a better method to suppress PrE cells than CRISPR/Cas9 microinjection of anti-PDGF receptor α gene, because microinjection suppressed number of Epi cells. The PDGF receptor might control the number of PrE cells by repressing the proapoptotic gene Txnip. Our results can help to isolate Epi-specific cell lines from blastocysts.

Preparation and Characterization of ${\alpha}$-D-Glucopyranosyl- ${\alpha}$-Acarviosinyl-D-Glucopyranose, a Novel Inhibitor Specific for Maltose-Producing Amylase

  • Kim, Myo-Jeong;Park, Kwan-Hwa
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2003년도 제39회 학술심포지움
    • /
    • pp.23-37
    • /
    • 2003
  • A novel inhibitor against maltose-producing a-amylase was prepared via stepwise degradation of a high molecular weight acarbose (HMWA) using Thermus maltogenic amylase (ThMA). The structure of the purified inhibitor was determined to be ${\alpha}$-D-glucopyranosyl-${\alpha}$-acarviosinyl-D-glucopyranose (GlcAcvGlc). Progress curves of p-nitrophenyl-${\alpha}$-D-maltoside (PNPG2) hydrolysis by various amylolytic enzymes, including maltogenase (MGase), ThMA, and cyclodextrinase(CDase) I-5, in the presence of acarbose or GlcAcvGlc indicated a slow-binding mode of inhibition. The inhibition potency of GlcAcvGlc for MGase, ThMA, and CDase I-5 was 3 orders of magnitude higher than that of acarbose.

  • PDF

Identification of a Deoxyribonuclease I Inhibitor from a Phage-Peptide Library

  • Choi, Suk-Jung;Sperinde, Jeffrey J.;Szoka, Francis C. Jr.
    • Molecules and Cells
    • /
    • 제19권1호
    • /
    • pp.54-59
    • /
    • 2005
  • Deoxyribonuclease I (DNase I) is a divalent cation dependent endonuclease and thought to be a significant barrier to effective gene delivery. The only known DNase I-specific inhibitor is monomeric actin which acts by forming a 1:1 complex with DNase I. Its use, however, is restricted because of tendency to polymerize under certain conditions. We screened two random phage peptide libraries of complexity $10^8$ and $10^9$ for DNase I binders as candidates for DNase I inhibitors. A number of DNase I-binding peptide sequences were identified. When these peptides were expressed as fusion proteins with Escherichia coli maltose binding protein, they inhibited the actin-DNase I interaction ($IC_{50}=0.1-0.7{\mu}M$) and DNA degradation by DNase I ($IC_{50}=0.8-8{\mu}M$). Plasmid protection activity in the presence of DNase I was also observed with the fusion proteins. These peptides have the potential to be a useful adjuvant for gene therapy using naked DNA.

Calcium Signaling of Dioleoyl Phosphatidic Acid via Endogenous LPA Receptors: A Study Using HCT116 and HT29 Human Colon Cancer Cell Lines

  • Chang, Young-Ja;Kim, Hyo-Lim;Sacket, Santosh J.;Kim, Kye-Ok;Han, Mi-Jin;Jo, Ji-Yeong;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • 제15권3호
    • /
    • pp.150-155
    • /
    • 2007
  • In the present study, we have tested the effect of dioleoyl phosphatidic acid (PA) on intracellular $Ca_{2+}$ concentration ($[Ca^{2+}]_{i}$) in two human colon cancer cell lines (HCT116 and HT29). PA and lysophosphatidic acid (LPA), a bioactive lysolipid, increased $[Ca^{2+}]_{i}$ in both HCT116 and HT29 cell lines. Increases of $[Ca^{2+}]_{i}$ by PA and LPA were more robust in HCT116 cells than in HT29 cells. A specific inhibitor of phospholipase C (U73122), however, was not inhibitory to the cell responses. Pertussis toxin, a specific inhibitor of $G_{i/o}$ type G proteins, however, had an inhibitory effect on the responses except for an LPA-induced one in HT29 cells. Ruthenium red, an inhibitor of the ryanodine receptor, was not inhibitory on the responses, however, 2-APB, a specific inhibitor of inositol 1,4,5-trisphosphate receptor, completely inhibited both lipid-induced $Ca^{2+}$ increases in both cell types. Furthermore, by using Ki16425 and VPC32183, two structurally dissimilar specific antagonists for $LPA_{1}/LPA_{3}$ receptors, an involvement of endogenous LPA receptors in the $Ca^{2+}$ responses was observed. Ki16425 completely inhibited the responses but the susceptibility to VPC32183 was different to PA and LPA in the two cell types. Expression levels of five LPA receptors in the HCT116 and HT29 cells were also assessed. Our data support the notion that PA could increase $[Ca^{2+}]_{i}$ in human colon cancer cells, probably via endogenous LPA receptors, G proteins and $IP_{3}$ receptors, thereby suggesting a role of PA as an intercellular lipid mediator.

Compositions, Protease Inhibitor and Gelling Property of Duck Egg Albumen as Affected by Salting

  • Quan, Tran Hong;Benjakul, Soottawat
    • 한국축산식품학회지
    • /
    • 제38권1호
    • /
    • pp.14-25
    • /
    • 2018
  • Chemical compositions, trypsin inhibitory activity, and gelling properties of albumen from duck egg during salting of 30 days were studied. As the salting time increased, moisture content decreased, the salt content and surface hydrophobicity increased (p<0.05). Trypsin inhibitory activity and specific activity were continuously decreased throughout the salting time of 30 days (p<0.05). This coincided with the decrease in band intensity of inhibitor with molecular weight of 44 kDa as examined by inhibitory activity staining. Nevertheless, no differences in protein patterns were observed in albumen during the salting of 30 days. Based on texture profile analysis, hardness, springiness, gumminess, chewiness, and resilience of albumen gel decreased with increasing salting time. Conversely, salted albumen gels exhibited higher cohesiveness and adhesiveness, compared to those of fresh albumen. Scanning electron microscopic study revealed that gel of salted albumen showed the larger voids and less compactness. In general, salting lowered trypsin inhibitory activity and gelling property of albumen from duck egg to some extent. Nevertheless, the salted albumen with the remaining inhibitor could be an alternative additive for surimi or other meat products to prevent proteolysis.

Effect of ${\alpha}$-Glycosidase Inhibitor in Multidrug Resistant Cell Lines

  • Paek, Nam-Soo;Namgung, Jun;Lee, Jung-Joon;Choi, Yong-Jin;Kim, Tae-Han;Kim, Kee-Won
    • BMB Reports
    • /
    • 제31권3호
    • /
    • pp.269-273
    • /
    • 1998
  • The objective of this study was to evaluate the reversal of multi drug resistance of human cell lines by specific inhibitors of ${\alpha}-glycosidase$ and mannosidases that had been reported to be involved in N-linked oligosaccharide processing of glycoproteins. N-methyldeoxynojirimycin, I-deoxynojirimycin, and castanospermine, which were known to be potent inhibitors of both ${\alpha}-glycosidase$ I and II, showed no activity against the multidrug resistant phenotype of the cell lines of SNU1DOX, KB-V1, and MCF-7/ADR. In contrast, I-deoxymannojirimycin, an inhibitor of mannosidase I, resulted in a slight reversal for the vinblastine resistance of the KB-V1 cell line, but did not show any activity toward the other cell lines. Parallel experiments with tunicamycin, an inhibitor of N-linked glycosylation, also resulted in no significant changes in multidrug resistant (MDR) phenotype of the cell lines tested in this work. These observations suggest that the unglycosylation of P-glycoprotein associated with the inhibitor treatments might not be correlated with the reversal of multidrug resistance of the cell lines tested in this study.

  • PDF

명란 단백분해효소 저해제의 특성 (Characteristics of Protease Inhibitor Purified from the Eggs of Alaska pollock (Theragra chalcogramma))

  • USTADI;김근영;김상무
    • 한국수산과학회지
    • /
    • 제38권2호
    • /
    • pp.83-88
    • /
    • 2005
  • Protease inhibitors were purified from the eggs of Alaska pollock (Theragra chalcogramma) using the following purification steps: ammonium sulfate precipitation, ion exchange, gel permeation, and high performance liquid chromatographies (HPLC). The protease inhibitor from the heated eggs of Alaska pollock was not as well purified. In addition, the heated eggs showed lower specific inhibitory activity than the unheated eggs. The purification yields after ammonium sulfate precipitation, ion exchange, and gel permeation chromatographies were 22.7$\%,\;15.3\%$,and $4.4\%$, respectively. There were two kinds of protease inhibitors on the gel permeation chromatography pattern Their molecular weights were estimated to be 66,700 and 16,000 Da, respectively. Both were classified as a cysteine protease inhibitor because of the existence of inhibiting papain, which is one of cysteine proteases.