• Title/Summary/Keyword: specific heat coefficient

검색결과 117건 처리시간 0.031초

Yb:YCa4O(BO3)3 단결정 성장과 분광 및 열적 특성 연구 (Crystal Growth of Yb:YCa4O(BO3)3 and Investigation of Spectroscopic and Thermal Properties)

  • 김충렬;이현준;유영문
    • 한국세라믹학회지
    • /
    • 제39권8호
    • /
    • pp.795-800
    • /
    • 2002
  • 융액인상법으로 질소분위기 하에서 $Yb^{3+}$ 이온이 20at% 고용된 $Yb:YCa_4O(BO_3)_3$ (Yb:YCOB) 단결정을 이리듐 도가니를 사용하여 성장시켰다. 양질의 단결정을 성장시키기 위한 인상속도와 회전속도는 각각 1.5∼2 mm/h와 10∼20 rpm이었다. 분광물성 측정 결과, 흡수단이 236 nm에 있었으며, 전형적인 $Yb^{3+}$ 이온의 흡수 스펙트럼이 관찰되었다. Yb:YCOB의 열팽창계수는 320∼650 K의 측정범위에서 결정학적 축 a, b 그리고 c에 대해 12.1×$10^{-6}$ /K, 5.9${\times}10^{-6}$/K, 12.9${\times}10^{-6}$이었다. 비열은 330 K에서 0.162 $cal/g{\cdot}K$이었다.

자동차 폐타이어로부터 발달된 탄소질 흡착제에 의한 Cd의 흡착 (Adsorption of Cd on Carbonaceous Adsorbent Developed from Automotive Waste Tire)

  • 김연정;우은정;최종하;홍용표;김대익;유건상
    • 대한화학회지
    • /
    • 제61권6호
    • /
    • pp.339-345
    • /
    • 2017
  • 자동차 폐타이어 분말(WTP)을 질소분위기 하에서 2시간 동안 $400^{\circ}C$의 온도에서 열처리하여 탄소질 흡착제(CA-WTP)로 만들고, 이들에 대한 열 중량 분석, 에너지 변환 X-선 분석, 주사전자 현미경, 비표면적 측정, 적외선 분광기들을 통해 특성을 파악한 후, 수중의 Cd의 제거를 위한 흡착제로서 시험하였다. 열처리한 CA-WTP는 WTP보다도 매우 높은 비표면적과 총 세공부피 그리고 Cd에 대해 높은 흡착효율을 나타내었다. 흡착의 평형 데이터는 Freundlich와 Langmuir 흡착 등온선 모델을 이용하여 평가하였고, 위 두 흡착 등온선 모두 0.95보다 큰 상관계수($R^2$) 값을 나타내었다. 연구의 결과는 열처리 한 폐타이어 분말(CA-WTP)이 수중으로부터 Cd을 흡착하는데 효율적인 흡착제로 사용될 수 있다는 것을 보였다.

$ZrSiO_4$가 첨가된 마찰재의 마찰 안정성 (Friction Stability of Materials with $ZrSiO_4$ Addition)

  • 이동규;박상찬
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.110-119
    • /
    • 1999
  • This study was conducted to invent brake of non-steel material without using asbestos and disc pad added $ZrSiO_4$ was made. The physical properties and friction characteristics were investigated by varying methods. The physical properties were inspected of shear strength, hardness, heat expansion, specific gravity, % of gashole, thickness variation, weight variation and pH variation. The friction stability was measured by friction coefficient on variations of speed, temperature and deceleration condition. It was found that the physical properties were in general excellent. According to the friction characteristics tests, $ZrSiO_4$ had an abrasive property. As a results, the friction materials containing $ZrSiO_4$ 3~5vol% showed better resistance to fading and improved friction stability than the materials without ZrSiO$_4$.

  • PDF

Nanocrystalline Materials-an Overview

  • Suryanarayana, C.
    • 한국분말재료학회지
    • /
    • 제3권4호
    • /
    • pp.233-245
    • /
    • 1996
  • Nanocrystalline materials, with a grain size of typically <100 nm, are a new class of materials with properties vastly different from and often superior to those of the conventional coarse-grained materials. These materials can be synthesized by a number of different techniques and the grain size, morphology, and composition can be controlled by controlling the process parameters. In comparison to the coarse-grained materials, nanocrystalline materials show higher strength and hardness, enhanced diffusivity, improved ductility/toughness, reduced, density, reduced elastic modulus, higher electrical resistivity, increased specific heat, higher coefficient of thermal expansion, lower thermal conductivity, and superior soft and hard magnetic properties. Limited quantities of these materials are presently produced and marketed in the US, Canada, and elsewhere. Applications for these materials are being actively explored. The present article discusses the synthesis, structure, thermal stability, properties, and potential application of nanocrystalline materials.

  • PDF

기계적합금화 공정에 의해 제조된 PbTe 소결체의 열전특성 (Thermoelectric Properties of PbTe Sintered Body Fabricated by Mechanical Alloying Process)

  • 이길근;정해용;이병우
    • 한국분말재료학회지
    • /
    • 제8권2호
    • /
    • pp.110-116
    • /
    • 2001
  • Abstract To investigate the effect of mechanical alloying process to thermoelectric properties of PbTe sintered body, Pb-Te mixed powder with Pb : Te : 1 : 1 composition was mechanically alloyed using tumbler-ball mill. Thermoelectric properties of the sintered body were evaluated by measuring of the Seebeck coefficient and specific electric resistivity from the room temperature to 50$0^{\circ}C$. Sintered body of only mechanically alloyed PbTe powder showed p-type behavior at the room temperature, and occurred type transition from p-type to n-type at about 30$0^{\circ}C$. PbTe sintered body which was fabricated using heat treated powder in $H_2$ atmosphere after mechanical alloying showed stable n-type behavior under 50$0^{\circ}C$. N-type PbTe sintered body fabricated by mechanical alloying process had 4 times higher power factor than that fabricated by the melt-crushing process. Application of a mechanical alloying process to fabricate of n-type PbTe thermoelectric material seemed to be useful to increase the power factor of PbTe sintered body.

  • PDF

비등유로의 압력강하 요동특성 (Characteristics of Pressure-Drop Oscillations in a Boiling Channel)

  • 김병주;신광섭
    • 설비공학논문집
    • /
    • 제7권1호
    • /
    • pp.132-141
    • /
    • 1995
  • Characteristics of pressure-drop oscillations(PDO) in a boiling channel were studied numerically and compared with experimental data. Effects of initial and boundary conditions on PDO were investigated in terms of oscillation period and amplitude. The period and amplitude of PDO increased with increasing of the compressible volume in the surge tank and the heat input. PDO occurred within the specific range of the fluid temperature, at which oscillation period and amplitude diminished rapidly with the increase of the fluid temperature. The increase of the loss coefficient in fluid supply line resulted in slightly longer oscillation period and larger amplitude. Numerical results showed good agreement with the experimental data.

  • PDF

A Compilation and Evaluation of Thermal and Mechanical Properties of Bentonite-based Buffer Materials for a High- level Waste Repository

  • Cho, Won-Jin;Lee, Jae-Owan;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.90-103
    • /
    • 2002
  • The thermal and mechanical properties of compacted bentonite and bentonite-sand mixture were collected from the literatures and compiled. The thermal conductivity of bentonite is found to increase almost linearly with increasing dry density and water content of the bentonite. The specific heat can also be expressed as a function of water ontent, and the coefficient of thermal expansion is almost independent on the dry density. The logarithm of unconfined compressive strength and Young’s modulus of elasticity increase linearly with increasing dry density, and in the case of constant dry density, it can be fitted to a second order polynomial of water content. Also the unconfined compressive strength and Young’s modulus of elasticity of the bentonite-sand mixture decreases with increasing sand content. The Poisson’s ratio remains constant at the dry density higher than 1.6 Mg/m$_3$, and the shear strength increases with increasing dry density.

Predicting the Frequency of Combustion Instability Using the Measured Reflection Coefficient through Acoustic Excitation

  • Bae, Jinhyun;Yoon, Jisu;Joo, Seongpil;Kim, Jeoungjin;Jeong, Chanyeong;Sohn, Chae Hoon;Borovik, Igor N.;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.797-806
    • /
    • 2017
  • In this study, the reflection coefficient (RC) and the flame transfer function (FTF) were measured by applying acoustic excitation to a duct-type model combustor and were used to predict the frequency of the combustion instability (CI). The RC is a value that varies with the excitation frequency and the geometry of the combustor as well as other factors. Therefore, in this study, an experimentally measured RC was used to improve the accuracy of prediction in the cases of 25% and 75% hydrogen in a mixture of hydrogen and methane as a fuel. When the measured RCs were used, an unstable condition was correctly predicted, which had not been predicted when the RCs had been assumed to be a certain value. The reason why the CI occurred at a specific frequency was also examined by comparing the peak of the FTF with the resonance frequency, which was calculated using Helmholtz's resonator analysis and a resonance frequency equation. As the CI occurred owing to the interaction between the perturbation in the rate of heat release and that in the pressure, the CI was frequent when the peak of the FTF was close to the resonance frequency such that constructive interference could occur.

화재모델링을 이용한 입출력 변수의 민감도, 상관계수 분석과 주성분 분석 (Analysis of Sensitivity, Correlation Coefficient and PCA of Input and Output Parameters using Fire Modeling)

  • 남기태;김정진;윤석표;김준경
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.46-54
    • /
    • 2019
  • Even though the fire performance-based design concept has been introduced for various structures and buildings, which have their own specific fire performance level, the uncertainties of input parameters always exist and, then, could reduce significantly the reliability of the fire modeling. Sensitivity analysis was performed with three limited input parameters, HRRPUA, type of combustible materials, and mesh size, which are significantly important for fire modeling. The output variables are limited to the maximum HRR, the time reaching the reference temperature($60^{\circ}C$), and that to reach limited visible distance(5 m). In addition, correlation coefficient analysis was attempted to analyze qualitatively and quantitatively the degree of relation between input and output variables above. Finally, the relationship among the three variables is also analyzed by the principal component analysis (PCA) to systematically analyze the input data bias. Sensitivity analysis showed that the type of combustible materials is more sensitive to maximum HRR than the ignition source and mesh size. However, the heat release parameter of the ignition source(HRR) is shown to be much more sensitive than the combustible material types and mesh size to both time to reach the reference temperature and that to reach the critical visible distance. Since the derived results can not exclude the possibility that there is a dependency on the fire model applied in this study, it is necessary to generalize and standardize the results of this study for the fire models such as various buildings and structures.

Buongiorno의 비균질 모델을 사용한 나노유체의 층류 자연대류 해석 (COMPUTATION OF LAMINAR NATURAL CONVECTION OF NANOFLUID USING BUONGIORNO'S NONHOMOGENEOUS MODEL)

  • 최석기;김성오;이태호
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.25-34
    • /
    • 2013
  • A numerical study of a laminar natural convection of the CuO-water nanofluid in a square cavity using the Buongiorno's nonhomogeneous model is presented. All the governing equations including the volume fraction equation are discretized on a cell-centered, non-uniform grid employing the finite-volume method with a primitive variable formulation. Calculations are performed over a range of Rayleigh numbers and volume fractions of the nanopartile. From the computed results, it is shown that both the homogeneous and nonhomogeneous models predict the deterioration of the natural convection heat transfer well with an increase of the volume fraction of nanoparticle at the same Rayleigh number, which was observed in the previous experimental studies. It is also shown that the differences in the computed results of the average Nusselt number at the wall between the homogeneous and nonhomogeneous models are very small, and this indicates that the slip mechanism of the Brown diffusion and thermophoresis effects are negligible in the laminar natural convection of the nanofluid. The degradation of the heat transfer with an increase of the volume fraction of the nanoparticle in the natural convection of nanofluid is due to the increase of the viscosity and the decrease of the thermal expansion coefficient and the specific heat. It is clarified in the present study that the previous controversies between the numerical and experimental studies are owing to the different definitions of the Nusselt number.