• Title/Summary/Keyword: specific heat

Search Result 1,584, Processing Time 0.029 seconds

N.M.for the Effect of P.T. on Resicual Stress Relaxation (잔류응력 완화에 미치는 상변태의 수치적 모델링)

  • 장경복;손금렬;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.84-89
    • /
    • 1999
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions. i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. consequently, in this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis.

  • PDF

A Study on the Development of a Three Dimensional Numerical Model for the Casting Processes (주조공정의 수치해석을 위한 3차원 전산모델 개발에 관한 연구)

  • ;S.Patankar
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1436-1444
    • /
    • 2002
  • A three dimensional numerical model was developed to analyze the mold filling and solidification processes straightforwardly in a casting processes. On the basis of the SIMPLER algorithm, the VOF method and the Equivalent Specific Heat method were adopted to deal with the free surface behavior and the latent heat evolution. The complete model has been validated using exact solutions and experimental results. The importance of three-dimensional effects has been highlighted by comparing the results from the three-dimensional analysis with those given by a two-dimensional analysis.

The Thermal Diffusivity of Standard Pieces for Spark Test (불꽃試驗용 標準試片 의 熱擴散 係數)

  • 차경옥;이관수;이흥주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.319-327
    • /
    • 1983
  • The thermal diffusivity one of the series of standard pieces for spark test are determined by the flash method. The standard pieces are composed with carbon steels, structural carbon steels, alloy steels and high speed tool steels. In order to compute the thermal conductivity of the standard pieces, their specific heats are measured by a differential scanning calorimeter. The thermal conductivities are calculated from the data of specific heat, density and thermal diffusivity. To increase the accuracy of data for the thermal diffusivity by data reduction excursion method in the flash method, the governing heat diffusion equation, which is closely described experimental conditions with the finite pulse and the heat loss from the sample surfaces, is solved. In this analysis an integral transform is used.

Study on the mechanical Properties of Ti-8Ta-3Nb Alloys for Biomaterials (생체재료용 Ti-8Ta-3Nb 합금의 물성변화 고찰)

  • 이경원;반재삼;유영선;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1374-1377
    • /
    • 2003
  • Ti-8Ta-3Nb is made for biomaterial. The experimental speciments are as-cast Ti-8Ta-3Nb and Ti-8Ta-3Nb swaged. The solution treatment in the range 760-96$0^{\circ}C$have been carried out. The microstructural investigations have been carried out on the specimens after the solution treatment. and the hardness have been measured. And the specific heat and the dilatometer of Ti-8Ta-3Nb swaged have been measured. From the result, the $\beta$ transus of the alloy was determined to be 880-86$0^{\circ}C$.

  • PDF

Demonstrative Experiments on the Magnetocaloric Effect of Gadolinium (가돌리늄의 자기열량효과에 대한 실증실험)

  • 이종석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.383-389
    • /
    • 2004
  • Magnetic refrigeration is based on the magnetocaloric effect (MCE) - the ability of some materials to heat up when magnetized and cool down when removed from the magnetic field. The available techniques for studying the MCE we: (1) direct measurements by monitoring the change in the material's temperature during the application or removal of the magnetic field; and (2) indirect calculations from the experimental data of magnetization and/or specific heat as a function of the temperature and magnetic field. The MCE of gadolinium (Gd) has been demonstrated by direct measurements of temperature change, and isothermal magnetic entropy changes and adiabatic temperature changes have been calculated.

Expansion Characteristics of the Hydrated Sodium Silicate (수화된 규산소다의 팽창 특성)

  • Kong, Yang-Pyo;Cho, Ho-Yeon;Suhr, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.54-59
    • /
    • 2008
  • Hydrated sodium silicate with 25 wt% water contents was synthesized by hydrothermal reaction using anhydrous sodium silicate. The hydrated sodium silicate was expanded at $370^{\circ}C$ for 30 min. and then pulverized, classified (- 200 mesh) and press-formed. The samples were heat treated at $400{\sim}900^{\circ}C$ for 30 min. in order to study the expansion characteristics depending on heat treatment temperature. A porous body with closed pore was formed above $600^{\circ}C$. The volume expansion ratio and the pore size were increased and the specific gravity was decreased with increasing heat treatment temperature. However, the volume expansion ratio was decreased and the specific gravity was increased above $850^{\circ}C$ due to the softening of the sodium silicate.

Measurement of Volume Fraction of ${\varepsilon}$ Martensite using Specific Volume Difference in Fe-Mn Based Alloys (Fe-Mn 계 합금에서 비부피 차를 이용한 ${\varepsilon}$ 마르텐사이트의 부피분율 측정)

  • Jee, K.K.;Han, J.H.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.211-215
    • /
    • 2003
  • In this work, a new way of measuring the volume fraction of e martensite in Fe-based alloys has been proposed. Since the specific volume of ${\varepsilon}$ martensite, depending on alloy composition, is smaller than that of austenite i.e ${\gamma}$ phase, volume expansion takes place during ${\varepsilon}{\rightarrow}{\gamma}$ reverse transformation. As the amount of the volume expansion is proportional to the product of specific volume difference times the volume fraction of ${\varepsilon}$ martensite, the volume fraction of ${\varepsilon}$ martensite can be calculated by measuring the volume expansion and the specific volume difference. Such a relationship was confirmed in Fe-21Mn and Fe-32Mn-6Si alloys which undergo ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation on cooling and by cold rolling, respectively. It was also found that the former has isotropic ${\varepsilon}$ martensite while the latter has anisotropic ${\varepsilon}$ martensite.

Investigation of Heat Transfer in Microchannel with One-Side Heating Condition Using Numerical Analysis (수치 해석을 이용한 단일 마이크로채널의 단면 가열 조건의 열전달 특성에 관한 연구)

  • Choi, Chi-Woong;Huh, Cheol;Kim, Dong-Eok;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.986-993
    • /
    • 2007
  • The microchannel heat sink is promising heat dissipation method far high density electronic devices. The cross-sectional shape of MEMS based microchannel heat sink is limited to triangular, trapezoidal, and rectangular due to their fabrication method. And heat is added to one side surface of heat source. Therefore, those specific conditions make some complexity of heat transfer in microchannel heat sink. Though many previous research of conjugate heat transfer in microchannel was conducted, most of them did not consider heat loss. In this study, numerical investigation of conjugate heat transfer in rectangular microchannel was conducted. The method of heat loss evaluation was verified numerically. Heat distribution was different for each wall of rectangular microchannel due to thermal conductivity and distance from heat source. However, the ratio of heat from each channel wall was correlated. Therefore, the effective area correction factor could be proposed to evaluate accurate heat flux in one side heating condition.

Combustion Properties of Ethylene-propylene diene monomer/polypropylene/Clay Nanocomposites Based on EDPM/PP (EPDM/PP에 바탕을 둔 에칠렌-프로필렌 디엔 모노머/폴리프로필렌/클레이 나노복합체의 연소특성)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.410-417
    • /
    • 2011
  • Effects of ethylene-propylene diene monomer (EPDM)/polypropylene (PP), zinc oxide, stearic acid, and clay on the combustive properties based on EDPM/PP were investigated. The EDPM/PP/clay nanocomposites was compounded to prepare specimen for combustive analysis by cone calorimeter (ISO 5660-1). It was found that the specific mass loss rate (SMLR) in the nanocomposites decreased due to the fire resistance compared with unfilled EDPM/PP, while the nanocomposites showed the higher total heat release (THR), higher CO production release, and higher specific extinction area (SEA) than those of virgin EPDM/PP. The stearic acid for softening ruber increased the THR and amount of smoke by itself, combustible.

An Experimental Study on Combustion Characteristics of Biodiesel Fuel in Marine Diesel Engine (선박디젤기관에서 바이오디젤연료의 연소특성에 대한 실험적 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.29-35
    • /
    • 2015
  • Environmental pollution is produced by consumption of fossil fuel, therefore alternative fuels is interested for development of new energy resources and reduction of exhaust emissions for air pollution prevention. Biofuels are produced from new vegetable oil and animal fat, may be used as fuel without change of engine structure in diesel engine. In this paper, the test results on specific fuel consumption, combustion characteristics of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine, especially this biodiesel was produced from biodiesel fuel at our laboratory by ourselves. This study showed that specific fuel consumption is increased slightly, on the other hand cylinder pressure, rate of pressure rise, rate of heat release and soot were decreased slightly in the case of biodiesel blends than neat diesel oil.