Browse > Article
http://dx.doi.org/10.12925/jkocs.2011.28.4.5

Combustion Properties of Ethylene-propylene diene monomer/polypropylene/Clay Nanocomposites Based on EDPM/PP  

Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.28, no.4, 2011 , pp. 410-417 More about this Journal
Abstract
Effects of ethylene-propylene diene monomer (EPDM)/polypropylene (PP), zinc oxide, stearic acid, and clay on the combustive properties based on EDPM/PP were investigated. The EDPM/PP/clay nanocomposites was compounded to prepare specimen for combustive analysis by cone calorimeter (ISO 5660-1). It was found that the specific mass loss rate (SMLR) in the nanocomposites decreased due to the fire resistance compared with unfilled EDPM/PP, while the nanocomposites showed the higher total heat release (THR), higher CO production release, and higher specific extinction area (SEA) than those of virgin EPDM/PP. The stearic acid for softening ruber increased the THR and amount of smoke by itself, combustible.
Keywords
clay nanocomposite; total heat release (THR); CO production release; specific extinction area (SEA);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 G. L. Nelson, "Fire and Polymers", American Chemical Society, Washington DC. (1990).
2 M. Lewis, S. M. Altas, and E. M. Pearce, "Flame-Retardant Polymer Materials", Plenum Press, New York (1975).
3 A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, and O. kamjngato, Swelling behavior of montmorillonite cation exchanged for $\omega$-amino acids by $\varepsilon$-caprolactam J. Mater. Res., 8, 1174 (1993).   DOI   ScienceOn
4 P. B. Massersmith and E. P. Giannelis, Synthesis and Barrier Properties of Poly ($\varepsilon$-caprolactone)-Layered Silicate Nanocomposites, J. Polym sci, : Part A : Polym Chem., 33, 1047 (1995).
5 Z. Wang and T. J. Piannavaia, Nanolayer Reinforcement of Elastomeric Polyurethane, Chem Mater., 10, 3769 (1998).   DOI   ScienceOn
6 R. Krishnamoorti and E. P. Giannelis, Rheology of End-Tethered Polymer Layered Silicate Nanocomposites, Macromolecules, 30, 4097 (1997).   DOI   ScienceOn
7 A. Oya and Y. Kurokawa, Factors controlling mechanical properties of clay mineral/polypropylene nanocomposites, J. Mater. Sci., 35, 1045 (2000).   DOI   ScienceOn
8 P. B. Masscrsmith and E. P. Giannelis, Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites, Chem Mater., 6, 1719 (1994).   DOI   ScienceOn
9 T. J. Pinnavaia, Intercalated Clay Catalysts, Science, 220, 365 (1983).   DOI   ScienceOn
10 V. Babrauskas, "New Technology to Reduce Fire Losses and Costs", eds. S. J. Grayson and D. A. Smith, Elsevier Appied Science Publisher, London, UK. (1986).
11 M. M. Hirschler, "Thermal Decomposition and Chemical Composition", American Chemical Society Symposium Series 797 (2001).
12 ISO 5660-1, "Reaction-to-Fire Tests - Heat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method)", Genever (2002).
13 Y. C. Yang and Y. W. Chang, Fracture Behavior of EPDM/Clay Composite, Applied Chemistry, 4(2), 85 (2000).
14 Y. J. Chung, Combustive Properties of Polyurethane/polypropylene/ Clay Nanocomposites, J. of Korean Institute of Fire Sci. & Eng., 25(6), in press (2011).
15 Y. J. Chung, Comparison of Combustion Properties of Native Wood Species Used for Fire Pots in Korea, J. Ind. Eng. Chem. 16, 15 (2010). doi: 10.1016/j.jiec.2010.01.031   DOI   ScienceOn
16 F. M. Pearce, Y. P. Khanna, and D. Raucher, "Thermal Analysis in Polymer flammability", Chap. 8, Thermal Characterization of Polymeric Materials, Academic Press, New York, U.S.A. (1981).
17 V. Babrauskas, Development of Cone Calorimeter-A Bench-Scale Heat Release Rate Apparatus Based on Oxygen Consumption, Fire and Materials, 8(2), 81 (1984). doi: 1002/fam.810080206.   DOI   ScienceOn
18 V. Babrauskas and S. J. Grayson, "Heat Release in Fires", E & FN Spon (Chapman and Hall), London, UK. (1992).
19 N. N. Greenwood and A. Earnshow, "Chemistry of Elements", Butterworth-Heinemann, Oxford (1997). ISBN 0080379419
20 M. M. Hirscher, Reduction of smoke formation from and flammability of thermoplastic polymers by metal oxides, POLYMER, 25(March), 405 (1984).   DOI   ScienceOn
21 J. Zhang, D. D. Jiang, and C. A. Wilkie, Thermal and Flame Properties of Polyethylene and Polypropylene Nanocomposites Based on an Oligomerically-modified Clay, Polm. Degrad. Stab., 91, 298 (2006).   DOI   ScienceOn
22 Y. J. Chung, Comparison of Combustion Properties of Pinus Rigida, Castanea Sativa, and Zelkova Serrata, J. of Korean Instiute of Fire Sci. & Eng. 23(4), 73 (2010).
23 J. G. Quintire, "Principles of Fire Behavior", Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).