• Title/Summary/Keyword: specific genes

Search Result 1,950, Processing Time 0.035 seconds

Differential Evolution between Monotocous and Polytocous Species

  • Ahn, Hyeonju;Kim, Kyu-Won;Kim, Hyeon Jeong;Cho, Seoae;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.464-470
    • /
    • 2014
  • One of the most important traits for both animal science and livestock production is the number of offspring for a species. This study was performed to identify differentially evolved genes and their distinct functions that influence the number of offspring at birth by comparative analysis of eight monotocous mammals and seven polytocous mammals in a number of scopes: specific amino acid substitution with site-wise adaptive evolution, gene expansion and specific orthologous group. The mutually exclusive amino acid substitution among the 16 mammalian species identified five candidate genes. These genes were both directly and indirectly related to ovulation. Furthermore, in monotocous mammals, the EPH gene family was found to have undergone expansion. Previously, the EPHA4 gene was found to positively affect litter size in pigs and supports the possibility of the EPH gene playing a role in determining the number of offspring per birth. The identified genes in this study offer a basis from which the differences between monotocous and polytocous species can be studied. Furthermore, these genes may harbor some clues to the underlying mechanism, which determines litter size and may prove useful for livestock breeding strategies.

Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato

  • Kang, Won-Hee;Yeom, Seon-In
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2018
  • Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.

A Study of Hox Gene Expression Profile During Murine Liver Regeneration

  • Boyeon-Youn;Kim, Byung-Gyu;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Liver is an organ having an ability to regenerate by itself when it is damaged or removed. Since the research on the liver regeneration so far was regarding on the cellular multiplications not the formation of the shape, we intended to analyze the expression pattern of Hox genes during liver regeneration. RNA samples isolated from liver at the time of partial hepatectomy, 4 hours as well as 3 days later following regeneration were used to perform RT-PCR with Hox-specific degenerate primers. The PCR products were cloned, sequenced and analyzed through BLAST program. Genes belonging to the AbdB type Hox genes (paralogous groups IX-XIII) expressed predominantly during regeneration, while the other group (I-VII), especially Hoxal and bl seemed to be expressed continuously before and after regeneration. These data altogether imply that paralogous group IX and X genes including Hoxa10 and d10 seemed to be regeneration specific genes of liver.

  • PDF

Elucidation of the Regulation of Ethanol Catabolic Genes and ptsG Using a glxR and Adenylate Cyclase Gene (cyaB) Deletion Mutants of Corynebacterium glutamicum ATCC 13032

  • Subhadra, Bindu;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1683-1690
    • /
    • 2013
  • The cyclic AMP receptor protein (CRP) homolog, GlxR, controls the expression of several genes involved in the regulation of diverse physiological processes in Corynebacterium glutamicum. In silico analysis has revealed the presence of glxR binding sites upstream of genes ptsG, adhA, and ald, encoding glucose-specific phosphotransferase system protein, alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH), respectively. However, the involvement of the GlxR-cAMP complex on the expression of these genes has been explored only in vitro. In this study, the expressions of ptsG, adhA, and ald were analyzed in detail using an adenylate cyclase gene (cyaB) deletion mutant and glxR deletion mutant. The specific activities of ADH and ALDH were increased in both the mutants in glucose and glucose plus ethanol media, in contrast to the wild type. In accordance, the promoter activities of adhA and ald were derepressed in the cyaB mutant, indicating that glxR acts as a repressor of adhA. Similarly, both the mutants exhibited derepression of ptsG regardless of the carbon source. These results confirm the involvement of GlxR on the expression of important carbon metabolic genes; adhA, ald, and ptsG.

Effect of Gender-Specific Adult Bovine Serum on Gene Expression During Myogenesis

  • Lee, Eun-Ju;Pokharel, Smritee;Kim, Jie-Hoe;Nam, Sang-Sup;Choi, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Gender specificity in muscle growth and development is well known. Genesis of muscle is dependent on proliferation and differentiation potential of resident myogenic satellite cells (MSCs) present in muscle fibers. Multipotential capacity of forming myocyte, osteocyte, and adipocyte like cell makes MSCs a unique stem cell. To understand the molecular mechanism involved in determination of muscle quality due to difference in hormone concentration of different gender of animals, MSCs were isolated from bovine skeletal muscle and cultured in male, female, and castrated serum supplemented media. DNA microarray used consisted of 24,000 spots with 70 mer oligo in each spot. A total of 88 genes were up-regulated and 551 genes were down-regulated by more than two fold. Among up-regulated gene, 33, 34, and 21 genes were found up-regulated in cells grown in male, female, and castrated serum, respectively. Interestingly, male serum showed 4, female 11 and castrated male showed 4 genes expressed highly in each gender. Further study on the highly up-regulated gene may unfold the mystery of gender specificity found in muscle development. Also, the identification of differentially expressed genes in gender-specific serum will add information on infrastructure of bovine genome research.

Effects of Allicin on Cytokine Production Genes of Human Peripheral Blood Mononuclear Cells (마늘의 Allicin이 사람 단핵세포의 사이토카인 생산 유전자의 발현에 미치는 영향)

  • 박란숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.3
    • /
    • pp.191-196
    • /
    • 2002
  • The effect of allicin, the major component of garlic (Allium sativum), on the gene expression profiles of peripheral blood mononuclear cells from healthy donors was analyzed. DNA microarray which can detect expression signal of 862 genes revealed that allicin induced the expression of cytokine, chemokine, and immune-related genes in peripheral blood mononuclear cells. In contrast, allicin repressed the expression of adaptive immune-related genes, which are expressed in T helper 1 Iymphocytes. Simultaneous inhibitory and stimulatory effects of allicin were found on inflammatory cells. It is likely that allicin down-regulated the expression of specific genes that were previously up-regulated in resting cells, suggesting a new mechanism by which they exert positive and negative effect. Considering the broad and renewed interest in allicin, the profiles we describe here will be useful in designing more specific and efficient treatment strategies.

Auxin-responsive SMALL AUXIN UP RNA genes : recent research progress and its application for crop improvement (옥신 반응 SMALL AUXIN UP RNA 유전자의 최근 연구 동향 및 작물 개량을 위한 적용)

  • Lee, Sang Ho
    • Journal of Plant Biotechnology
    • /
    • v.40 no.2
    • /
    • pp.59-64
    • /
    • 2013
  • Auxin is a key plant hormone which regulates overall plant growth development. A number of researches to investigate auxin signaling identified three major classes of early auxin response genes: AUX/IAA, GH3 and SMALL AUXIN UP RNA (SAUR). Among these genes, in planta functions of SAUR gene family are largely ambiguous, while both AUX/IAA and GH3 genes are analyzed to mediate negative feedback on auxin response. SAUR genes encode small plant-specific proteins. SAUR gene products are highly unstable and transiently expressed in the tissue- and developmental-specific manners in response to auxin and various environmental stimuli. In the decades, molecular and genetic approaches to elucidate in planta functions of SAURs have been hampered by several factors such as the unstable molecular features and functional redundancy among them. However, a series of recent studies focusing on several subgroups of SAUR gene family made significant progress in our understanding of its biochemical and physiological functions. These works suggest that many SAUR proteins mainly regulate auxin-related cell expansion and auxin transport. In this review, the recent progress in SAUR research and prospects for crop improvement through its genetic manipulation are discussed.

Testis-specific transcripts in the chicken

  • Kim, Duk-Kyung
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2005.11a
    • /
    • pp.53-59
    • /
    • 2005
  • Sequences of candidate chicken testis-specific genes were analyzed in order to develop a resource for functional genomic studies of the testis and male germ cells. Tentative consensus sequences (TCs) containing ESTs expressed in testis libraries only were selected from the TIGR Gallus gallus Gene Index, resulting in a total of 292 TCs. The transcriptional expression of these genes were evaluated in a variety of chicken tissues, including testis and ovary, Of the panel of 292 TCs, 110 were expressed in a testis-specific manner. The correlation between the number of ESTs assembled into each TC and the number of testis-specific TCs was not significant. Annotation of the TCs using the Gene Ontology database terms showed that the proportion of testis-specific TCs that were classified as having catalytic activity (within the Molecular Function branch) was larger than the proportion of total chicken TCs classified in the same way. Our results might facilitate the investigation of testis-specific genes and their functional analysis in the chicken as well as in other avian species.

  • PDF

Transcriptional Profiles of Imprinted Genes in Human Embryonic Stem Cells During In vitro Differentiation

  • Park, Sang-Wook;Do, Hyo-Sang;Kim, Dongkyu;Ko, Ji-Yun;Lee, Sang-Hun;Han, Yong-Mahn
    • International Journal of Stem Cells
    • /
    • v.7 no.2
    • /
    • pp.108-117
    • /
    • 2014
  • Background and Objectives: Genomic imprinting is an inheritance phenomenon by which a subset of genes are expressed from one allele of two homologous chromosomes in a parent of origin-specific manner. Even though fine-tuned regulation of genomic imprinting process is essential for normal development, no other means are available to study genomic imprinting in human during embryonic development. In relation with this bottleneck, differentiation of human embryonic stem cells (hESCs) into specialized lineages may be considered as an alternative to mimic human development. Methods and Results: In this study, hESCs were differentiated into three lineage cell types to analyze temporal and spatial expression of imprinted genes. Of 19 imprinted genes examined, 15 imprinted genes showed similar transcriptional level among two hESC lines and two human induced pluripotent stem cell (hiPSC) lines. Expressional patterns of most imprinted genes were varied in progenitors and fully differentiated cells which were derived from hESCs. Also, no consistence was observed in the expression pattern of imprinted genes within an imprinting domain during in vitro differentiation of hESCs into three lineage cell types. Conclusions: Transcriptional expression of imprinted genes is regulated in a cell type- specific manner in hESCs during in vitro differentiation.

Isolation of Novel Pseudonocardia Polyene Biosynthetic Genes via Genomics-based PCR Screening

  • Lee, Mi-Yeon;Hwang, Young-Bin;Park, Hyun-Joo;Han, Kyu-Boem;Kim, Eung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.396-397
    • /
    • 2005
  • The polyene antibiotics are a family of most promising antifungal polyketide compounds, typically produced by actinomycetes species. Using the polyene CYP-specific PCR screening with served actinomycetes genomic DNAs, Pseudonocardia autotrophica strain was identified to contain a unique polyene-specific CYP gene. The genomic DNA library screening using the polyene-specific CYP gene probe revealed the positive cosmid clone containing an approximately 34.5 kb DNA fragment revealed a total of seven complete and two incomplete open reading frame (ORFs), which are highly homologous but unique to previously-known polyene biosynthetic genes. These results suggest that the polyene-specific screening approach should be an efficient way of isolating potectially-valuable cryptic polyene biosynthetic gene cluster from various rare actinomycetes.

  • PDF