• 제목/요약/키워드: specific energy absorption

검색결과 157건 처리시간 0.024초

충격 하중을 받는 폼 코어 샌드위치 빔의 파괴 모드 연구 (Failure modes of foam core sandwich beams under impact loads)

  • 임태성;이창섭;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.135-138
    • /
    • 2003
  • Recently, sandwich structures have been widely employed in load bearing structures due to their high specific stiffness and high specific strength. Some sandwich structures are subjected to not only static loads but also impact loads which might induce failure of structures at far less load than expected. Since sandwich structures can fail in various modes, estimation of the impact energy absorption is difficult. In this work, the impact failure modes and the impact energy absorption characteristics of the sandwich beams were predicted by the FE analysis and confirmed by the impact test. From the analytic and experimental results, the impact failure mode map was constructed with respect to non-dimensional parameters.

  • PDF

Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load

  • Baaskaran, N.;Ponappa, K.;Shankar, S.
    • Steel and Composite Structures
    • /
    • 제28권2호
    • /
    • pp.179-194
    • /
    • 2018
  • Reliable and accurate method of computationally aided design processes of advanced thin walled structures in automotive industries are much essential for the efficient usage of smart materials, that possess higher energy absorption in dynamic compression loading. In this paper, most versatile components i.e., thin walled crash tubes with different geometrical profiles are introduced in view of mitigating the impact of varying cross section in crash behavior and energy absorption characteristics. Apart from the geometrical parameters such as length, diameter and thickness, the non-dimensionalized parameters of average forces which control the plastic bending moment for varying thickness has explored in view of quantifying its impact on the crashworthiness of the structure. The explicit finite element code ABAQUS is utilized to conduct the numerical studies to examine the effect of parametric modifications in crash behavior and energy absorption. Also the simulation results are experimentally validated. It is evident that the circular cross-sectional tubes are preferable as high collision impact shock absorbers due to their ability in withstanding axial and oblique impact loads effectively. Furthermore, the specific energy absorption (SEA), crash force efficiency (CFE), plastic bending moment, peak force responses and its impact for optimally tailoring a design to cater the crashworthiness requirements are investigated. The primary outcome of the study is to provide sufficient information on circular tubes for the use of energy absorbers where impact oblique loading is expected.

알루미늄/GFRP 혼성튜브의 굽힘붕괴 특성 (The characteristics of bending collapse of aluminum/GFRP hybrid tube)

  • 송민철;이정주
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.84-87
    • /
    • 2000
  • Square tubes used for vehicle structure components have an important role on keeping its stiffness and preserving occupant safety in vehicle collision and rollover in which it experience axial collapse, bending collapse or both. Bending collapse, which absorbs kinetic energy of the impact and retains a survival space for the occupant, is a dominant failure mode in oblique collision and rollover. Thus, in this paper, the bending collapse characteristics such as the maximum bending moment and energy absorption capacity of the square tube replaced by light-weight material were evaluated and presented. The bending test of cantilever tubes which were fabricated with aluminum, GFRP and aluminum/ GFRP hybrid by co-curing process was performed. Then the maximum bending moment and the energy absorption capacity from the moment-angle curve were evaluated. Based on the test results, it was found that aluminum/ GFRP hybrid tube can show better specific energy absorption capacity compared to the pure aluminum or GFRP tube and can convert unstable collapse mode which may occur in pure GFRP tube to stable collapse mode like a aluminum tube in which plastic hinge is developed.

  • PDF

축 압궤하중을 받는 Gr/E 복합재 튜브의 에너지 흡수특성 (The Absorbed Energy Characteristics of Gr/E Composite Tubes under Axial Collapse Load)

  • 양현수;김영남;최흥환
    • 대한안전경영과학회지
    • /
    • 제4권2호
    • /
    • pp.189-197
    • /
    • 2002
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design lot improved material properties. Composite tubes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibers, in the matrix and in the fiber-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of Gr/E(Graphite/Epoxy) tubes on static and impact tests. The collapse characteristics and energy absorption of a variety of tubes have been examined. Changes in the lay-up which increased the modulus increased the energy absorption of the tubes. Based on the test results, the following remarks can be made: Among CA15, CA00 and CA90 curves the CA90 tube exhibits the highest crush load throughout the whole crush process, and max load increases as interlaminar number increase. Among all the tubes type CC90 has the largest specific crushing stress of 52.60 kJ/kg which is much larger than other tubes.

알루미늄/GFRP 혼성 사각튜브의 정적 압축 붕괴 및 에너지 흡수 특성 (Axial Crush and Energy Absorption Characteristics of Aluminum/GFRP Hybird Square Tubes)

  • 김구현;이정주;신금철
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.208-219
    • /
    • 2000
  • In this study, static axial crush tests were performed with the new aluminum/GFRP hybrid tube. Glass/Epoxy prepregs were wrapped around an aluminum tube and co-cured. The failure of the hybrid tube was stable and progressive without trigger mechanism, and specific energy absorption was increased to the maximum of 33% in comparison with the aluminum tube. Effective energy absorption is possible for an inner aluminum tube because a wrapped composite tube constrains the deflection of an aluminum tube. The failure of a hybrid composite tube was stable without trigger mechanism because the inner aluminum tube could play the role of the crack initiator and controller. Mean crushing load could be calculated by modifying the plastic hinge collapse model for hybrid materials. The predicted results by this analytical model showed good agreement with the experimental results. It can be said that Aluminum/Glass-Epoxy hybrid tube is suitable for the vehicle front structure because this hybrid tube shows effective energy absorption, easy production, and simple application capability for RTM process.

  • PDF

차체구조용 복합재 박육부재의 축압괴 특성에 관한 연구 (The Study on the Axial Collapse Characteristics of Composite Thin-Walled Members for Vehicles)

  • 김영남;차천석;양인영
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.195-200
    • /
    • 2001
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design for improved material properties. Composite tribes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibres, in the matrix and in the fibre-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of CFRP(Carbon Fiber Reinforced Plastics) tubes on static and impact tests. Static compression tests have been carried out using the static testing machine and impact tests have been carried out using the vertical crushing testing machine. Interlaminar number affect the energy absorption capability of CFRP tubes. Also, theoretical and experimental have the same value.

  • PDF

Peak-to-zero modulation of optical absorption via electrically controllable quantum interference

  • Lee, Byoung-Ho;Kim, Kyoung-Youm
    • Journal of the Optical Society of Korea
    • /
    • 제6권2호
    • /
    • pp.33-36
    • /
    • 2002
  • We propose a modulation scheme of optical absorption in a coupled asymmetric quantum well (QW) structure via electrically controllable quantum interference. It is based on the parallel-perpendicular energy coupling effect. We show that by applying an external electric Held in the parallel direction (to the QW layers), we can obtain a maximum (peak-type) absorption at a specific wavelength where absorption cancellation would occur due to electrically induced transparency without such an external Held .

Electrochemical Study on Energy Potential Levels with Pyrene Molecule

  • Kim, Hyungjoo;Li, Xiaochuan;Son, Young-A
    • 한국염색가공학회지
    • /
    • 제25권3호
    • /
    • pp.159-164
    • /
    • 2013
  • Pyrene based molecule has been synthesized through the reaction of pyrene-1-carboxaldehyde and 4- phenylthiosemicarbazide in this research. The pyrene based molecule showed specific optical properties such as absorption and emission changes after mixing with fluoride in DMSO. The phenomenon is induced by the interaction of the molecule and fluoride. This interaction may affect to electron distributions and potential energy levels. In this regard, synthesized pyrene based molecule has been investigated for its electron distributions and HOMO/LUMO energy levels depending on interaction with fluoride. The absorption measurement, cyclicvoltammograms and computational method were investigated to calculate and compare energy potential levels.

Study of the effect of varying shapes of holes in energy absorption characteristics on aluminium circular windowed tubes under quasi-static loading

  • Baaskaran, N;Ponappa, K;Shankar, S
    • Structural Engineering and Mechanics
    • /
    • 제70권2호
    • /
    • pp.153-168
    • /
    • 2019
  • In this paper, energy absorption characteristics of circular windowed tubes with different section shapes (circular, ellipse, square, hexagon, polygon and pentagon) are investigated numerically and experimentally. The tube possesses the same material, thickness, height, volume and average cross sectional area which are subjected under axial and oblique quasi-static loading conditions. Numerical model was constructed with FE code ABAQUS/Explicit, the obtained outcome of simulation is in good matching with the experimental data. The energy absorbed, specific energy absorption, crash force efficiency, peak and mean loads along with the collapse modes with their initiation point of simple and windowed tubes were evaluated. The technique for order of preference by similarity ideal solution (TOPSIS) approach was employed for assessing their overall crushing performances. The obtained results confirm that efficacy of crash force indicators have improved by introducing windows and tubes with pentagonal and circular windows achieves the maximum ranking about 0.528 and 0.517, it clearly reveals the above are best window shapes.

고충돌에너지 흡수용 알루미늄 크래쉬박스 개발 (Development of Al Crash Box for High Crashworthiness Enhancement)

  • 유정수;김석봉;이문용;허훈
    • 소성∙가공
    • /
    • 제17권3호
    • /
    • pp.182-188
    • /
    • 2008
  • Crash box is one of the most important automotive parts for crash energy absorption and is equipped at the front end of the front side member. The specific characteristics of aluminum alloys offer the possibility to design cost-effective lightweight structures with high stiffness and excellent crash energy absorption potential. This study deals with crashworthiness of aluminum crash box for an auto-body with the various types of cross section. For aluminum alloys, A17003-T7 and A17003-T5, the dynamic tensile test was carried out to apply for crash analysis at the range of strain from 0.003/sec to 200/sec. The crash analysis and the crash test were carried out for three cross sections of rectangle, hexagon and octagon. The analysis results show that the octagon cross section shape with A17003-T5 has higher crashworthiness than other cross section shapes. The effect of rib shapes in the cross section is important factor in crash analysis. Finally, new configuration of crash box with high crash energy absorption was suggested.