• 제목/요약/키워드: specific detection.

검색결과 2,493건 처리시간 0.032초

생물의약품 제조공정에서 마이코플라스마 정량 검출을 위한 TaqMan Probe Real-Time PCR (TaqMan Probe Real-Time PCR for Quantitative Detection of Mycoplasma during Manufacture of Biologics)

  • 이재일;김인섭
    • KSBB Journal
    • /
    • 제29권5호
    • /
    • pp.361-371
    • /
    • 2014
  • Mycoplasma is well recognized as one of the most prevalent and serious microbial contaminants of biologic manufacturing processes. Conventional methods for mycoplasma testing, direct culture method and indirect indicator cell culture method, are lengthy, costly and less sensitive to noncultivable species. In this report, we describe a new TaqMan probe-based real-time PCR method for rapid and quantitative detection of mycoplasma contamination during manufacture of biologics. Universal mycoplasma primers were used for mycoplasma PCR and mycoplasma DNA was quantified by use of a specific TaqMan probe. Specificity, sensitivity, and robustness of the real-time PCR method was validated according to the European Pharmacopoeia. The validation results met required criteria to justify its use as a replacement for the culture method. The established real-time PCR assay was successfully applied to the detection of mycoplasma from human keratinocyte and mesenchymal stem cell as well as Vero cell lines artificially infected with mycoplasma. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of mycoplasma contamination during manufacture of biologics.

Rapid Screening of Apple mosaic virus in Cultivated Apples by RT-PCR

  • Ryu, Ki-Hyun;Park, Sun-Hee
    • The Plant Pathology Journal
    • /
    • 제19권3호
    • /
    • pp.159-161
    • /
    • 2003
  • The coat protein (CP) gene of Apple mosaic virus (ApMV), a member of the genus Ilarvirus, was selected for the design of virus-specific primers for amplification and molecular detection of the virus in cultivated apple. A combined assay of reverse transcription and polymerase chain reaction (RT-PCR) was performed with a single pair of ApMV-specific primers and crude nucleic acid extracts from virus-infected apple for rapid detection of the virus. The PCR product was verified by restriction mapping analysis and by sequence determination. The lowest concentration of template viral RNA required for detection was 100 fg. This indicates that the RT-PCR for detection of the virus is a 10$^3$times more sensitive, reproducible and time-saving method than the enzyme-linked immunosorbent assay. The specificity of the primers was verified using other unrelated viral RNAs. No PCR product was observed when Cucumber mosaic virus (Cucumovirus) or a crude extract of healthy apple was used as a template in RT-PCR with the same primers. The PCR product (669 bp) of the CP gene of the virus was cloned into the plasmid vector and result-ant recombinant (pAPCP1) was selected for molecule of apple transformation to breed virus-resistant transgenic apple plants as the next step. This method can be useful for early stage screening of in vitro plantlet and genetic resources of resistant cultivar of apple plants.

Reverse Transcription Polymerase Chain Reaction-based System for Simultaneous Detection of Multiple Lily-infecting Viruses

  • Kwon, Ji Yeon;Ryu, Ki Hyun;Choi, Sun Hee
    • The Plant Pathology Journal
    • /
    • 제29권3호
    • /
    • pp.338-343
    • /
    • 2013
  • A detection system based on a multiplex reverse transcription (RT) polymerase chain reaction (PCR) was developed to simultaneously identify multiple viruses in the lily plant. The most common viruses infecting lily plants are the cucumber mosaic virus (CMV), lily mottle virus (LMoV), lily symptomless virus (LSV). Leaf samples were collected at lily-cultivation facilities located in the Kangwon province of Korea and used to evaluate the detection system. Simplex and multiplex RT-PCR were performed using virus-specific primers to detect single- or mixed viral infections in lily plants. Our results demonstrate the selective detection of 3 different viruses (CMV, LMoV and LSV) by using specific primers as well as the potential of simultaneously detecting 2 or 3 different viruses in lily plants with mixed infections. Three sets of primers for each target virus, and one set of internal control primers were used to evaluate the detection system for efficiency, reliability, and reproducibility.

In situ PCR에 의한 alcelaphine herpesvirus-l (AHV-l)의 진단법 개발 및 다른 분자생물학적 진단법들과의 비교 (In situ PCR for the Detection of Alcelaphine Herpesvirus-l and Comparison with other Molecular Biological Diagnostic Methods)

  • 김옥진
    • 한국수의병리학회지
    • /
    • 제6권1호
    • /
    • pp.1-5
    • /
    • 2002
  • A1celaphine herpesvirus 1 (AHV-1) is a causative agent of malignant catarrhal fever which is a fatal and a lymphoproliferative syndrome. AHV-1 is a gamma herpesvirus, which induces frequent latent infection and often difficult to detect its antigens or specific nucleic acids because of its low viral copies in the infected tissues. A new method, in situ PCR, is developed for the detection of AHV-1 nucleic acid in this study. Target sequences of AHV-1 open reading frame 50 gene were detected within AHV-1 infected MDBK cells. As compare with other molecular biological methods for the detection of AHV-1, in situ PCR was found to be more sensitive than in situ hybridization and to be less sensitive than nested PCR. However, nested PCR cannot afford to observe and differentiate AHV-1 infected cells. In situ PCR amplifies a target sequence within cells that can be visualized microscopically with increased sensitivity compared to detection by in situ hybridization. In situ PCR has wide applications for sensitive localization of low copy AHV-1 viral sequences within cells to investigate the role of viruses in a variety of clinical conditions and also provide the rapid, sensitive, and specific detection of AHV-1 infection.

  • PDF

Detection of Mycobacterium leprae by Real-time PCR Targeting Mycobacterium leprae-Specific Repetitive Element Sequence

  • Jin, Hyun-Woo;Wang, Hye-Young;Kim, Jong-Pill;Cho, Sang-Nae;Lee, Hye-Young
    • 대한의생명과학회지
    • /
    • 제16권2호
    • /
    • pp.127-131
    • /
    • 2010
  • Mycobacterium leprae detection is difficult even with molecular biological techniques due to the low sensitivity of current methodologies. In this report, real-time PCR targeting the M. leprae-specific repetitive element (RLEP) sequence was developed as a new diagnostic tool and evaluated using clinical specimens. For this, M. leprae DNAs were extracted from skin biopsy specimens from 80 patients and analyzed by real-time PCR using TaqMan probe. Then, the detection efficiency of the real-time PCR was compared with that of standard PCR. In brief, the rate of positive detection by the standard PCR and real-time PCR was 32.50% and 66.25%, respectively. The results seemed to clearly show that the TaqMan real-time PCR developed in this study may be a useful tool for sensitive detection of M. leprae from clinical specimens.

Rapid and Sensitive Detection of the Causal Agents of Postharvest Kiwifruit Rot, Botryosphaeria dothidea and Diaporthe eres, Using a Recombinase Polymerase Amplification Assay

  • Gi-Gyeong Park;Wonyong Kim;Kwang-Yeol Yang
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.522-527
    • /
    • 2023
  • The occurrence of postharvest kiwifruit rot has caused great economic losses in major kiwifruit-producing countries. Several pathogens are involved in kiwifruit rot, notably Botryosphaeria dothidea, and Diaporthe species. In this study, a recombinase polymerase amplification (RPA) assay was developed for the rapid and sensitive detection of the pathogens responsible for posing significant threats to the kiwifruit industries. The RPA primer pairs tested in this study were highly specific for detection of B. dothidea and D. eres. The detection limits of our RPA assays were approximately two picograms of fungal genomic DNA. The optimal conditions for the RPA assays were determined to be at a temperature of 39℃ maintained for a minimum duration of 5 min. We were able to detect the pathogens from kiwifruit samples inoculated with a very small number of conidia. The RPA assays enabled specific, sensitive, and rapid detection of B. dothidea and D. eres, the primary pathogens responsible for kiwifruit rots in South Korea.

Robust fault detection and diagnosis in boiler systems

  • Kim, Yu-Soong;Kwon, Oh-Kyu;Hong, Il-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.537-542
    • /
    • 1994
  • This paper gives a general survey of model-based fault detection and dignosis methods. Specific applications of these ideas to boiler systems will also be discussed. A novel aspect of the fault detection technique described here is that it explicitly accounts for the effects of using simplified models and errors from linearizing a nonlinear system at an operation point. Inclusion of these effects is shown to lead to novel fault detection procedures which outperform existing methods when applied to typical fault scenarios in boiler systems.

  • PDF

Rapid Detection Methods for Agro-Food Safety

  • Kim, Gi-Young
    • 한국환경농학회:학술대회논문집
    • /
    • 한국환경농학회 2009년도 정기총회 및 국제심포지엄
    • /
    • pp.157-168
    • /
    • 2009
  • Frequent outbreaks of foodborne illness have been increasing the awareness of agro-food safety. Conventional methods for pathogen detection and identification are labor.intensive and take days to complete. The increasing use of rapid food safety testing is receiving more and more attention. The major reason for this trend is that the food industry requires quick and accurate results. The rapid detection of contaminants in food is critical for ensuring the safety of consumers. Recent advances in technology make detection and identification faster, more sensitive and more specific than traditional method. In this paper, technology trends and recent developments in rapid methods for agro-food safety are discussed.

  • PDF

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

자율주행 차량 영상 기반 객체 인식 인공지능 기술 현황 (Overview of Image-based Object Recognition AI technology for Autonomous Vehicles)

  • 임헌국
    • 한국정보통신학회논문지
    • /
    • 제25권8호
    • /
    • pp.1117-1123
    • /
    • 2021
  • 객체 인식이란 하나의 특정 이미지를 입력했을 때, 주어진 이미지를 분석하여 특정한 객체(object)의 위치(location)와 종류(class)를 파악하는 것이다. 최근 객체 인식 기술이 적극적으로 접목되는 분야 중 하나는 자율주행 차량이라 할 수 있고, 본 논문에서는 자율주행 차량에서 영상 기반의 객체 인식 인공지능 기술에 대해 기술한다. 영상 기반 객체 검출 알고리즘은 최근 두 가지 방법(단일 단계 검출 방법 및 두 단계 검출 방법)으로 좁혀지고 있는데, 이를 중심으로 분석 정리하고자 한다. 두 가지 검출 방법의 장단점을 분석 제시하고, 단일 단계 검출 방법에 속하는 YOLO/SSD 알고리즘과 두 단계 검출 방법에 속하는 R-CNN/Faster R-CNN 알고리즘에 대해 분석 기술한다. 이를 통해 자율주행에 필요한 각 객체 인식 응용에 적합한 알고리즘이 선별적으로 선택되어 연구개발 되어질 수 있기를 기대한다.