• Title/Summary/Keyword: specific binding

Search Result 1,279, Processing Time 0.035 seconds

Transcriptional Regulation of a DNA Repair Gene in Saccharomyces cerevisiae

  • Jang, Yeon-Kyu;Sancar, Gwen-B.;Park, Sang-Dai
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1998.10b
    • /
    • pp.113-113
    • /
    • 1998
  • In Saccharomyces cerevisiae UV irradiation and a variety of chemical DNA -damaging agents induce the transcription of specific genes, including several involved in DNA repair. One of the best characterized of DNA -damage inducible genes is PHRI, which encodes the apoenzyme for DNA photolyase. Basal-level and damage-induced expression of PHRI require an upstream activation sequence, UASPHRI. Here we report the identification of the UlvIE6 gene of S. cerevisiae as a regulator of UASPHRl activity. Surprisingly, the effect of deletion of UME6 is growth phase dependent. In wild-type cells PHRI is induced in late exponential phase, concomitant with the initiation of glycogen accumulation that precedes the diauxic shift. Deletion of UNIE6 abolishes this induction, decreases the steady-state concentration of photolyase molecules and PHRI mRNA, and increases the UV sensitivity of a rad2 mutant. The results suggest that UM E6 contributes to the regulated expression of a subset of damage-responsive genes in yeast. Furthermore, the upstream repression sequence, URSPHRI, is required for repression and damage-induced expression of PHRl. Here we show identification of YER169W and YDR096W as putative regulators acting through $URS_{PHRI}$. These open reading frames were designated as RPHI (YERl69W) and RPH2 (YDR096W) indicating regulator of PHRI. Simultaneous disruption of both genes showed a synergistic effect, producing a four-fold increase in basal level expression and a similar decrease m the induction ratio following treatment of methyl methanesulfonate(MMS). Mutation of the sequence ($AG_4$) bound by Rphlp rendered the promoter of PHRI insensitive to changes in RPHI or RPH2 status. The data suggest that RPHI and RPH2 act as damage-responsive negative regulators of PHRI. Surprisingly, the sequence bound by Rphlp in vitro is found to be $AG_4$ which is identical to the consensus binding site for the regulators Msn2p and Msn4p involved in stress-induced expression. Deletion of MSN2 and MSN4 has little effect on the induction$.$ ratio following DNA damage. However, all deletions led to a significant decrease in basal-level and induced expression of PHRI. These results imply that MSN2 and MSN4 are positive regulators of P HRI but are not required for DNA damage repression. [Supported by grant from NIH]om NIH]

  • PDF

Lanthanum-induced Inhibitions of Microsomal $H^+-ATPase$ in the Roots of Tomato ($La^{3+}$에 의한 토마토 뿌리조직 마이크로솜 $H^+-ATPase$ 활성저해)

  • Cho, Kwang-Hyun;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.46 no.2
    • /
    • pp.84-89
    • /
    • 2003
  • In order to find a chemical agent which is able to modulate the activity of $H^+-ATPase$, microsomal preparation was obtained from the root tissue of tomato plant and the effect of $La^{3+}$ was measured. The activities of plasma and vacuolar membrane $H^+-ATPase$ were analyzed by the inhibited activities using their specific inhibitors, vanadate and $NO_3-$, respectively. $La^{3+}$ inhibited microsomal ATPases in a dose-dependent manner and the inhibitory effect of $La^{3+}$ was suppressed by both vanadate and $NO_3-$, implying that $La^{3+}$ inhibits both plasma and vacuolar membrane $H^+-ATPase$. The Ki. values of $La^{3+}$which inhibit 50% of the activities of plasma and vacuolar membrane $H^+-ATPase$ were 57 and $78\;{\mu}M$, respectively. The $H^+-ATPase$ of the leaky microsomes made by the treatment of Triton X-100 were also inhibited by $La^{3+}$, suggesting that $La^{3+}$ directly inhibits both enzymes. Meanwhile, the inhibitory effect of $La^{3+}$ was decreased by increasing the concentration of ATP, The effect of ATP was also concentration-dependent and 7 mM ATP completely removed the inhibitory effect of $La^{3+}$. These results imply that $La^{3+}$ inhibits both plasma and vacuolar membrane $H^+-ATPases$ by decreasing the binding affinity of ATP and $La^{3+}$ can be used to control the activity or root $H^+-ATPases$.

Immunogold Labellings and Expression of Metallothionein in Regenerating Rat Liver (재생중인 흰쥐 간의 메탈로사이오닌에 대한 면역-금 표지 및 발현에 관한 연구)

  • Ahn, Young-Mo;Oh, Seung-Han;Kim, Ho-Jin;Lee, Mi-Young;Lee, Jong-Hwa;Shin, Kil-Sang;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.35 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • Metallothionein (MT) is a low molecular weight, cysteine-rich, metal-binding, and non-enzymatic protein. The present study was carried out to investigate the expression of MT gene as well as the localization of MT in regenerating rat liver. In partial hepatectomized rats, MT mRNA was detected as early as 1 hr and reached a maximal level by 8 hr after the operation. Thereafter, this level decreased gradually until 24 hr, and it became similar to that of sham control. Meanwhile, time course of MT immunoreactivity using immunogold-labelling revealed that the number of gold particles in hepatocytes increased significantly by 12 hr, but decreased at 48 hr after partial hepatectomy. Ultrastructurally, immunogold particles indicating the presence of MT were distributed in both the cytoplasm and the nucleus of the rat hepatocytes, particularly the particles were distributed at rough endoplasmic reticulum and nucleolus and did not seem to adhere to mitochondria or lysosomes in proliferating hepatocytes. Briefly, high level of MT mRNA expression and the intense immunoreactivity and/or the specific localization of MT was observed during liver regeneration. These results suggest that MT possibly involves hepatocyte proliferation via the storage or the supply of various metal ions in the regenerating rat liver.

Quantification of Bowman-Birk Protease Inhibitors in Soybeans and Soybean Products by Competitive Enzyme-Linked Immunosorbent Assay (경합 Enzyme-Linked Immunosorbent Assay에 의한 대두 및 대두가공제품 중의 Bowman-Birk Protease Inhibitors의 함량 분석)

  • Kim, Sung-Ran;Shon, Dong-Hwa;Kim, Su-Il;Hong, Hee-Do
    • Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.310-316
    • /
    • 1999
  • BBPI contents in domestic soybean and soybean products were investigated by the measurement of chymotrypsin inhibiting activity(C.I.A) and competitive ELISA method. In order to produce polyclonal antibody, BBPI was purified from soybean trypsin-chymotrypsin inhibitor by ion exchange chromatography and electrophoretic gel slicing. Rabbit anti-BBPI polyclonal antibody was produced with the purified BBPI as immunogen. This antibody showed relatively specific binding to BBPI and then used for the establishment of competitive ELISA method to measure BBPI contents in extracts of soybean and soybean products. The standard curve for the measurement of BBPI in soybean extracts was drawn up within the range 0.03 to $30\;{\mu}g/ml$ of BBPI. The C.I.A. and BBPI contents of 12 soybean cultivars were $8,462{\sim}12,428\;U/g$ and $482{\sim}692\;mg%$, respectively. The C.I.A. and BBPI contents were not detected in most of soybean products except soybean sprouts, which contained $10,695{\sim}13,249\;U/g$ of C.I.A. and $529{\sim}803\;mg%$ of BBPI.

  • PDF

PKA-Mediated Regulation of B/K Gene Transcription in PC12 Cells

  • Choi, Mi-Hyun;Kim, Ho-Shik;Choi, Sung-Ho;Kim, Mi-Young;Jang, Yoon-Seong;Jang, Young-Min;Lee, Jeong-Hwa;Jeong, Seong-Whan;Kim, In-Kyung;Kwon, Oh-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.333-339
    • /
    • 2005
  • B/K protein is a novel protein containing double C2-like domains. We examined the specific signaling pathway that regulates the transcription of B/K in PC12 cells. When the cells were treated with forskolin ($50{\mu}M$), B/K mRNA and protein levels were time-dependently decreased, reaching the lowest level at 3 or 4 hr, and thereafter returning to the control level. Chemicals such as dibutyryl-cAMP, cellpermeable cyclic AMP (cAMP) analogue and CGS21680, adenosine receptor $A_{2A}$ agonist, also repressed the B/K transcription. However, 1,9-dideoxyforskolin did not show inhibitory effect on B/K transcription, suggesting direct involvement of cAMP in the forskolin-induced inhibition of B/K transcription. Effect of forskolin, dibutyryl cAMP and CGS21680 was significantly reduced in PKA-deficient PC12 cell line (PC12-123.7). One cAMP-response element (CRE)-like sequence (B/K CLS) was found in the promoter region of B/K DNA, and electrophoretic mobility shift assay indicated its binding to CREM and CREB. Forskolin significantly suppressed the promoter activity in CHO-K1 cells transfected with the constructs containing B/K CLS, but not with the construct in which B/K CLS was mutated (AC:TG). Taken together, we suggest that the transcription of B/K gene in PC12 cells may be regulated by PKA-dependent mechanism.

Detection of Mitochondrial ATP-Sensitive Potassium Channels in Rat Cardiomyocytes

  • Cuong, Dang Van;Kim, Na-Ri;Kim, Eui-Yong;Lee, Young-Suk;Kim, Hyun-Ju;Kang, Sung-Hyun;Hur, Dae-Young;Joo, Hyun;Park, Young-Shik;Hong, Yong-Geun;Lee, Sang-Kyung;Chung, Joon-Yong;Seog, Dae-Hyun;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.201-206
    • /
    • 2004
  • Mitochondrial ATP-sensitive potassium $(mitoK_{ATP})$ channels play a role in early and late ischemic preconditioning. Nevertheless, the subunit composition of $mitoK_{ATP}$ channels remains unclear. In this study, we investigated the subunit composition of $mitoK_{ATP}$ channels in mitochondria isolated from rat cardiac myocytes. Mitochondria were visualized using the red fluorescence probe, Mitrotracker Red, while $mitoK_{ATP}$ channels were visualized using the green fluorescence probe, glibenclamide-BODIPY. The immunofluorescence confocal microscopy revealed the presence of Kir6.1, Kir6.2 and SUR2 present in the cardiac mitochondria. Western blot analysis was carried to further investigate the nature of $mitoK_{ATP}$ channels. For SUR proteins, a 140-kDa immunoreactive band that corresponded to SUR2, but no SUR1 was detected. For Kir6.2, three bands $({\sim}44,\;{\sim}46,\;and\;{\sim}30\;kDa)$ were detected, and a specific ${\sim}46-kDa$ immunoreactive band corresponding to Kir6.1 was also observed. These observations suggest that the subunits of $mitoK_{ATP}$ channels in rat myocytes include Kir6.1, Kir6.2, and a SUR2-related sulfonylurea-binding protein.

Production of Monoclonal Antibody Against Listeria monocytogenes and Its Application to Immunochromatography Strip Test

  • Shim, Won-Bo;Choi, Jin-Gil;Kim, Ji-Young;Yang, Zheng-You;Lee, Kyu-Ho;Kim, Min-Gon;Ha, Sang-Do;Kim, Keun-Sung;Kim, Kwang-Yup;Kim, Cheol-Ho;Ha, Kwang-Soo;Eremin, Sergei A.;Chung, Duck-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1152-1161
    • /
    • 2007
  • An immunochromatography (ICG) strip test based on a monoclonal antibody for the rapid detection of L. monocytogenes in meat and processed-meat samples was developed in this study. A monoclonal antibody (MAb) specific to L. monocytogenes was produced from cloned hybridoma cells (FKLM-3B12-37) and used to develop an ICG strip test. The antibody showed a stronger binding to L. monocytogenes than other Listeria species, and a weak cross-reaction to S. aureus based on an ELISA. The detection limit of the ICG strip test was $10^5\;cell/ml$. In total, 116 meat and processed-meat samples were collected and analyzed using both the ICG strip test and a PCR. The ICG strip test and PCR indicated L. monocytogenes contamination in 34 and 27 meat samples, respectively. The 7 meat samples not identified as L. monocytogenes positive by the PCR were also tested using an API kit and found to be contaminated by Listeria species. In conclusion, the ICG strip test results agreed well with those obtained using the PCR and API kit. Thus, the developed ICG has potential use as a primary screening tool for L. monocytogenes in various foods and agricultural products, generating results within 20 min without complicated steps.

Cellular Toxic Effects and Action Mechanisms Of 2,2', 4,6,6'-Pentachlorobiphenyl

  • Kim Sun-Hee;Shin Kum-Joo;Kim Dohan;Kim Yun-Hee;Ryu Sung Ho;Suh Pann-Ghill
    • 한국생물공학회:학술대회논문집
    • /
    • 2004.07a
    • /
    • pp.1-20
    • /
    • 2004
  • Polychlorinated biphenyls (PCBs), one a group of persistent and widespread environmental pollutants, have been considered to be involved in immunotoxicity, carcinogenesis, and apoptosis. However, the toxic effects and physical properties of a PCB congener are dependent on the structure. In the present study, we investigate the toxic effects and action mechanisms of PCBs In cells. Among the various congeners tested, 2,2',4,6,6'-PeCB-pentachlorobiphenyl (PeCB), a highly ortho-substituted congener having negligible binding affinity for aryl hydrocarbon receptor (AhR), caused the most potent toxicity and specific effects in several cell types. 2,2',4,6,6'-PeCB induced apoptotic cell death of human monocytic cells, suggesting that PCB-induced apoptosis may be linked to immunotoxicity. In addition, 2,2',4,6,6'-PeCB induced mitotic arrest by interfering with mitotic spindle assembly in NIH3T3 fibroblasts, followed by genetic instability which triggers p53 activation. Which suggests that 2,2',4,6,6'-PeCB may be involved in cancer development by causing genetic instability through mitotic spindle damage. On the other hand, 2,2',4,6,6'-PeCB increased cyclooxygenase-2 (COX-2) involved in cell survival through ERK1/2 MAPK and p53 in Rat-1 fibroblasts and mouse embryonic fibroblasts, triggering compensatory mechanism for abating its toxicity. Taken together, these results demonstrate that PCB congeners of different structure have distinct mechanism of action and 2,2',4,6,6'-PeCB causes several toxicity as well as compensatory mechanism in cells.

  • PDF

BRI3 associates with SCG10 and attenuates NGF-induced neurite outgrowth in PC12 cells

  • Gong, Yanhua;Wu, Jing;Qiang, Hua;Liu, Ben;Chi, Zhikai;Chen, Tao;Yin, Bin;Peng, Xiaozhong;Yuan, Jiangang
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.287-293
    • /
    • 2008
  • In a yeast two-hybrid screen, we identified the microtubule-destabilizing protein SCG10 as a potential effector protein of $BRI_3$. The association was verified using GST pull-down, Co-IP, and their perinuclear co-localization. The analysis of in vitro microtubule polymerization/depolymerization showed that the binding of $BRI_3$ to SCG10 effectively blocked the ability of SCG10 to induce microtubule disassembly, as determined by turbidimetric assays. In intact PC12 cells, $BRI_3$ exhibited the ability to stabilize the microtubule network and attenuate the microtubule-destabilizing activity of SCG10. Furthermore, co-expression of $BRI_3$ with SCG10 attenuated SCG10-mediated PC12 cell neurite outgrowth induced by NGF. These results identify a novel connection between a neuron-specific BRI protein and the cytoskeletal network, suggesting possible roles of BRI3 in the process of neuronal differentiation.

4-(N-Methyl-N-nitrosamino)-1(3-pyridyl)-1-butanone(NNK) Restored the Cap-dependent Protein Translation Blocked by Rapamycin

  • Kim Jun-Sung;Park Jin Hong;Park Sung-Jin;Kim Hyun Woo;Hua Jin;Cho Hyun Sun;Hwang Soon Kyung;Chang Seung Hee;Tehrani Arash Minai;Cho Myung Haing
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.347-353
    • /
    • 2005
  • Eukaryotic initiation factor 4E (elF4E) is a key element for cap-dependent protein translation controlled by affinity between elF4E and 4E-binding protein 1 (4E-BP1). Rapamycin can also affect protein translation by regulating 4E-BP1 phosphorylation. Tobacco-specific nitrosamine, 4(N-methyl-N-nitrosamino )-1-(3-pyridyl)-1-butanone (NNK) is a strong lung carcinogen, but its precise lung cancer induction mechanism remains unknown. Relative roles of cap-dependent and -independent protein translation in terms of NNK-induced lung carcinogenesis were elucidated using normal human bronchial epithelial cells. NNK concentrations applied in this study did not decrease cell viability. Addition of NNK restored rapamycin-induced decrease of protein synthesis and rapamycin-induced phosphorylation of 4E-BP1, and increased expression levels of mTOR, ERK1/2, p70S6K, and Raf-1 in a concentration-dependent manner. NNK also caused perturbation of normal cell cycle progression. Taken together, NNK might cause toxicity through the combination of restoration of 4E-BP1 phosphorylation and increase of elF4E as well as mTOR protein expression, interruption of Raf1/ERK as well as the cyclin G-associated p53 network. Our data could be applied towards elucidation of the molecular basis for lung cancer treatment.