• 제목/요약/키워드: specific RNA

Search Result 1,732, Processing Time 0.029 seconds

Indole-3-Carbinol Promotes Goblet-Cell Differentiation Regulating Wnt and Notch Signaling Pathways AhR-Dependently

  • Park, Joo-Hung;Lee, Jeong-Min;Lee, Eun-Jin;Hwang, Won-Bhin;Kim, Da-Jeong
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.290-300
    • /
    • 2018
  • Using an in vitro model of intestinal organoids derived from intestinal crypts, we examined effects of indole-3-carbinol (I3C), a phytochemical that has anticancer and aryl hydrocarbon receptor (AhR)-activating abilities and thus is sold as a dietary supplement, on the development of intestinal organoids and investigated the underlying mechanisms. I3C inhibited the in vitro development of mouse intestinal organoids. Addition of ${\alpha}$-naphthoflavone, an AhR antagonist or AhR siRNA transfection, suppressed I3C function, suggesting that I3C-mediated interference with organoid development is AhR-dependent. I3C increased the expression of Muc2 and lysozyme, lineage-specific genes for goblet cells and Paneth cells, respectively, but inhibits the expression of IAP, a marker gene for enterocytes. In the intestines of mice treated with I3C, the number of goblet cells was reduced, but the number of Paneth cells and the depth and length of crypts and villi were not changed. I3C increased the level of active nonphosphorylated ${\beta}$-catenin, but suppressed the Notch signal. As a result, expression of Hes1, a Notch target gene and a transcriptional repressor that plays a key role in enterocyte differentiation, was reduced, whereas expression of Math1, involved in the differentiation of secretory lineages, was increased. These results provide direct evidence for the role of AhR in the regulation of the development of intestinal stem cells and indicate that such regulation is likely mediated by regulation of Wnt and Notch signals.

Post-transcriptional Regulation of Gcn5, a Putative Regulator of Hox in Mouse Embryonic Fibroblast Cells

  • Lee, You-Ra;Oh, Ji-Hoon;Kong, Kyoung-Ah;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.165-168
    • /
    • 2012
  • Hox proteins containing DNA-binding homedomain act as transcription factors important for anteroposterior body patterning during vertebrate embryogenesis. However, the precise mechanisms by which signal pathways are transduced to regulate the Hox gene expression are not clear. In the course of an attempt to isolate an upstream regulatory factor(s) controlling Hox genes, protein kinase B alpha (Akt1) has been identified as a putative regulator of Hox genes through in silico analysis (GEO profile). In the Gene Expression Omnibus (GEO) dataset GDS1784 at the NCBI (National Center for Biotechnology Information) site, Hox genes were differentially expressed depending on the presence or absence of Akt1. Since it was not well known how Akt1 regulates the specific Hox genes, whose transcription was reported to be regulated by epigenetic modifications such as histone acetylation, methylation etc., the expression of Gcn5, a histone acetyltransferase (HAT), was analyzed in wild type (WT) as well as in $Akt1^{-/-}$ mouse embryonic fibroblast (MEF) cells. RT-PCR analysis revealed that the amount of Gcn5 mRNA was similar in both WT and $Akt1^{-/-}$ MEFs. However, the protein level of Gcn5 was significantly increased in $Akt1^{-/-}$ MEF cells. The half life of Gcn5 was 1 hour in wild type whereas 8 hours in $Akt1^{-/-}$ MEF. These data all together, indicate that Gcn5 is post-transcriptionally down-regulated and the protein stability is negatively regulated by Akt1 in MEF cells.

Effects of the Acasia Catechu Extract on the Membranous Nephropathy Induced by Cationic Bovine Serum Albumin in Mice (아차(兒茶)가 Cationic Bovine Serum Albumin 투여로 유발된 Membranous Nephropathy Mouse Model에 미치는 영향)

  • Jeong, Gi-Hun;Cho, Chung-Sik;Kim, Cheol-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.495-509
    • /
    • 2009
  • Objective : Membranous nephropathy(MN) is an organ-specific autoimmune disease and a relatively common cause of nephrotic syndrome in adults worldwide. But treatment of MN is not defined. This study was to evaluate the effects of Acasia Catechu extract(ACE) on the MN induced by cBSA in mice. Methods : Mice were divided into 4 groups. The normal group was injected with a saline solution. The control group was treated with cBSA(10 mg/kg i.p.) only. The third group was treated with cBSA (10 mg/kg i.p.) and ACE (250 mg/kg, p.o.). The fourth group was treated with cBSA (10mg/kg i.p.) and ACE (500mg/kg, p.o.). After cBSA and ACE treatment for 6 weeks, we measured change of body weight, 24hrs proteinuria, serum albumin, total cholesterol, triglyceride, BUN, creatinine, TNF-$\alpha$, IL-6, IL-$1{\beta}$, IFN-$\gamma$, IgA, IgM and IgG levels. The morphologic changes of renal glomeruli were also observed with a light microscope. Results : The levels of 24 hrs proteinuria, total cholesterol, triglyceride, IgG, IgM, IgA, TNF-$\alpha$, IL-6, IL-$1{\beta}$, IFN-$\gamma$ significantly decreased in both ACE groups. The level of albumin significantly increased in both ACE groups. The mRNA expression of IL-$1{\beta}$ in splenocytes considerably decreased in the ACE-500 group. In histological findings of kidney tissue, thickening of GBM decreased in both ACE groups. Conclusions : This study shows that ACE might be effective for treatment of MN. More clinical data and studies are to be done for efficient application.

  • PDF

Genetic Diversity of Didymella bryoniae for RAPD Profiles Substantiated by SCAR Marker in Korea

  • Shim, Chang-Ki;Seo, Il-Kyo;Jee, Hyeong-Jin;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.22 no.1
    • /
    • pp.36-45
    • /
    • 2006
  • Twenty isolates of Didymella bryoniae were isolated from infected cucurbit plants in various growing areas of southern Korea in 2001 and 2002. Random Amplified Polymorphic DNA (RAPD) group [RG] I of D. bryoniae was more virulent than RG IV to watermelon. Virulence of the RG I isolate was strong to moderate to cucumber, whereas that of the RG IV varied from strong, moderate to weak. Two hundred seventy-three amplified fragments were produced with 40 primers, and were analyzed by a cluster analysis using UPGMA method with an arithmetic average program of NTSYSPC. At the distance level of 0.7, two major genomic DNA RAPD groups were differentiated among 20 isolates. The RG I included 7 isolates from watermelon and one isolate from melon, whereas the RG IV included 12 isolates from squash, cucumber, watermelon and melon. Amplification of internal transcribed spacer (ITS) region and small subunit rRNA region from the 20 isolates yielded respectively a single fragment. Restriction pattern with 12 restriction enzymes was identical for all isolates tested, suggesting that variation in the ITS and small subunit within the D. bryoniae were low. Amplification of the genomic DNAs of the tested isolates with the sequence characterized amplified regions (SCAR) primer RG IF-RG IR specific for RG I group resulted in a single band of 650bp fragment for 8 isolates out of the 20 isolates. Therefore, these 8 isolates could be assigned into RG I. The same experiments done with RG IIF-RG IIR resulted in no amplified PCR product for the 20 isolates tested. An about 1.4 kb-fragment amplified from the RG IV isolates was specifically hybridized with PCR fragments amplified from genomic DNAs of the RG IV isolates only, suggesting that this PCR product could be used for discriminating the RG IV isolates from the RG I isolates as well other fungal species.

Osteogenic Differentiation of Circulating Peripheral Blood Derived Mesenchymal Progenitor Cells (말초혈액 유래 간엽전구세포의 골분화)

  • Eun, Seok Chan;Kim, Jin Hee;Heo, Chan Yeong;Baek, Rong Min;Chang, Hak;Minn, Kyung Won
    • Archives of Plastic Surgery
    • /
    • v.35 no.3
    • /
    • pp.229-234
    • /
    • 2008
  • Purpose: There are some reports presenting that peripheral blood contain circulating hematopoietic cells as well as, in significantly smaller quantities, mesenchymal stem cells. The purposes of this study is to isolate and characterize circulating mesenchymal progenitor cells with osteogenic potential from human peripheral blood. Methods: Human buffycoat containing mononuclear cells was harvested from peripheral blood of normal persons and isolated using a density gradient centrifugation and serially subcultured in osteogenic media for 1-4 weeks. The proliferation capability, phase-contrast microscopy, transmission electron microscopy, immunophenotype FACS analysis, Alizarin red staining and RT-PCR assays for osteogenic differentiation potential were performed. Results: The phenotype of cultured cells changed from small round or cuboidal cells at passage 1 into large spindle-shaped fibroblastic morphology cells at passage 4. Surface marker expressed CD14, but did not express CD34, CD80, CD83. Strong positive staining was observed for Alizarin reds in osteogenic medium on day 14, Using RT-PCR, the mRNA levels of bone- specific genes, such as ALP, c-bfa-1 and osteocalcin were detected. Conclusion: A new subset of peripheral blood derived progenitor cells described here has the ability to proliferate and differentiate into osteogenic cell lineages in vitro, and to be candidate for regenerative therapy.

Molecular and Biochemical Characterization of Opisthorchis viverrini Calreticulin

  • Chaibangyang, Wanlapa;Geadkaew-Krenc, Amornrat;Vichasri-Grams, Suksiri;Tesana, Smarn;Grams, Rudi
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.6
    • /
    • pp.643-652
    • /
    • 2017
  • Calreticulin (CALR), a multifunctional protein thoroughly researched in mammals, comprises N-, P-, and C-domain and has roles in calcium homeostasis, chaperoning, clearance of apoptotic cells, cell adhesion, and also angiogenesis. In this study, the spatial and temporal expression patterns of the Opisthorchis viverrini CALR gene were analyzed, and calcium-binding and chaperoning properties of recombinant O. viverrini CALR (OvCALR) investigated. OvCALR mRNA was detected from the newly excysted juvenile to the mature parasite by RT-PCR while specific antibodies showed a wide distribution of the protein. OvCALR was localized in tegumental cell bodies, testes, ovary, eggs, Mehlis' gland, prostate gland, and vitelline cells of the mature parasite. Recombinant OvCALR showed an in vitro suppressive effect on the thermal aggregation of citrate synthase. The recombinant OvCALR C-domain showed a mobility shift in native gel electrophoresis in the presence of calcium. The results imply that OvCALR has comparable function to the mammalian homolog as a calcium-binding molecular chaperone. Inferred from the observed strong immunostaining of the reproductive tissues, OvCALR should be important for reproduction and might be an interesting target to disrupt parasite fecundity. Transacetylase activity of OvCALR as reported for calreticulin of Haemonchus contortus could not be observed.

Transcriptomic Features of Echinococcus granulosus Protoscolex during the Encystation Process

  • Fan, Junjie;Wu, Hongye;Li, Kai;Liu, Xunuo;Tan, Qingqing;Cao, Wenqiao;Liang, Bo;Ye, Bin
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.3
    • /
    • pp.287-299
    • /
    • 2020
  • Cystic echinococcosis (CE) is a zoonotic infection caused by Echinococcus granulosus larvae. It seriously affects the development of animal husbandry and endangers human health. Due to a poor understanding of the cystic fluid formation pathway, there is currently a lack of innovative methods for the prevention and treatment of CE. In this study, the protoscoleces (PSCs) in the encystation process were analyzed by high-throughput RNA sequencing. A total of 32,401 transcripts and 14,903 cDNAs revealed numbers of new genes and transcripts, stage-specific genes, and differently expressed genes. Genes encoding proteins involved in signaling pathways, such as putative G-protein coupled receptor, tyrosine kinases, and serine/threonine protein kinase, were predominantly up-regulated during the encystation process. Antioxidant enzymes included cytochrome c oxidase, thioredoxin glutathione, and glutathione peroxidase were a high expression level. Intriguingly, KEGG enrichment suggested that differentially up-regulated genes involved in the vasopressin-regulated water reabsorption metabolic pathway may play important roles in the transport of proteins, carbohydrates, and other substances. These results provide valuable information on the mechanism of cystic fluid production during the encystation process, and provide a basis for further studies on the molecular mechanisms of growth and development of PSCs.

Scolopendrasin I: a novel antimicrobial peptide isolated from the centipede Scolopendra subspinipes mutilans

  • Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Yun, Eun-Young;Nam, Sung-Hee;Ahn, Mi-Young;Lee, Young Bo;Hwang, Jae Sam
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • In a previous report, we identified several candidate antimicrobial peptides through de novo RNA sequencing of the centipede Scolopendra subspinipes mutilans. Here, we identify and characterize one of these peptides, Scolopendrasin I. We identified the centipede antimicrobial peptide Cecropin from the centipede transcriptome using an SVM algorithm, and subsequently analyzed the amino acid sequence for predicted secondary structure using a GOR algorithm. We identified an alpha helical region of Cecropin and named it Scolopendrasin I. We then assessed antimicrobial and hemolytic activity of Scolopendrasin I. Scolopendrasin I showed antimicrobial activity against various microbes, including antibiotic-resistant Gram-negative bacteria, in a radial diffusion assay. Scolopendrasin I had potent antibacterial activity against acne-associated microbes in a colony count assay and showed no hemolytic activity in a hemolysis assay. In addition, we confirmed that Scolopendrasin I bound to the surface of bacteria via a specific interaction with lipoteichoic acid and lipopolysaccharide, two components of bacterial cell membranes. In conclusion, the results presented here provide evidence that this is an efficient strategy for antimicrobial peptide candidate identification and that Scolopendrasin I has potential for successful antibiotic development.

Application of in situ hybridization for diagnosis of porcine reproductive and respiratory syndrome (돼지 생식기 및 호흡기 증후군 진단을 위한 in situ hybridization 기법의 응용)

  • Kim, Seung-jae;Park, Nam-yong
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.4
    • /
    • pp.793-807
    • /
    • 1997
  • We tried to develop detection system of porcine reproductive and respiratory syndrome virus(PRRSV) by in situ hybridization(ISH) in the piglets experimentally infected with KPRRS-2, the Korean isolate(12 piglets) or Mn-1b, the American isolate(4 piglets), and in the natural infection suspected 6 piglets. Twelve 30-days-old piglets(two pigs per each inoculated group) were inoculated by nasal instillation of KPRRS-2 virus(total dose $10^{4.5}TCID_{50}$), Six piglets(one pig per each group) were induced contact infection with inoculated piglets, during the experiment, and two piglets were used as control. Inoculated or contacted piglets were euthanized at 1, 3, 5, 7, 14 and 21 days postinoculation(DPI). The respiratory signs such as coughing and nasal discharge were observed on day 3 DPI, and ear cyanosis were on day 5 DPI, including contacted piglets. Through the necropsy, purple discolorization of dorsal part of lung, and hypertrophy of local lymph nodes were observed. The histopathological lesions of lung were interstitial pneumonia characterized by type 2 pneumocyte hyperplasia. We prepared the probe for ISH by RNA isolation from KPRRS-2, RT-PCR, and biotin labeling. We performed the ISH within only 1~2 hours using $Microprobe^{TM}$ capillary action system. As the results, the strong red specific positive signals, means PRRSV distribution, was mainly observed in the cytoplasm of alveolar macrophages. And also signals were detected in some type 2 pneumocytes and bronchiolar epithelium of lung, myocardium, liver, kidney, tonsil, spleen, gastrointestinal mucosa, testis and lymph nodes.

  • PDF

Seventeen Unrecorded Species from Gayasan National Park in Korea

  • Lee, Hyun;Park, Myung Soo;Park, Ji-Hyun;Cho, Hae Jin;Park, Ki Hyeong;Yoo, Shinnam;Lee, Jun Won;Kim, Nam Kyu;Lee, Jin Sung;Park, Jae Young;Kim, Changmu;Kim, Jae-Jin;Lim, Young Woon
    • Mycobiology
    • /
    • v.48 no.3
    • /
    • pp.184-194
    • /
    • 2020
  • Macrofungi play important roles in forest ecology as wood decayers, symbionts, and pathogens of living trees. For the effective forest management, it is imperative to have a comprehensive overview of macrofungi diversity in specific areas. As a part of the National Institute of Biological Resources projects for discovering indigenous fungi in Korea, we collected macrofungi in Gayasan National Park from 2017 to 2018. These specimens were identified based on morphological characteristics and sequence analysis of internal transcribed spacer (ITS) or the nuclear large subunit rRNA (LSU) region. We discovered 17 macrofungi new to Korea: Butyrea japonica, Ceriporia nanlingensis, Coltricia weii, Coltriciella subglobosa, Crepidotus crocophyllus, Cylindrobasidium laeve, Fulvoderma scaurum, Laetiporus cremeiporus, Lentinellus castoreus, Leucogyrophana mollusca, Marasmius insolitus, Nidularia deformis, Phaeophlebiopsis peniophoroides, Phanerochaete angustocystidiata, Phlebiopsis pilatii, Postia coeruleivirens, and Tengioboletus fujianensis. We described their detailed morphological characteristics.